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Abstract

OUFTI-1 is the first CubeSat from the University of Liége, as well as the first
nanosatellite ever developed in Belgium. OUFTI-1 is being developed within the
framework of a long-term, educative program, called Leodium (Liége in Latin), the
goal of which is to develop a series of student satellites for scientific experiments.
The payload of OUFTI-1 is a repeater for amateur radio, that uses the digital
D-STAR protocol.

We developed the hardware and the software of the on-board computer of the
OUFTI-1 CubeSat. The hardware uses an innovative solution, using two redun-
dant processor boards, one available off-the-shelf, and one developed specifically
for this mission. We developed a mechanism to manage the redundancy offered by
the two processors; the goal of this hardware architecture is to extend the lifetime
of the global system in the harsh space environment. Several prototypes of the
custom board were built and successfully tested.

An original, modular, and robust architecture for the satellite on-board software
was designed. It consists of six general-purpose modules that can handle real-time
processing of housekeeping measurements, automatic storage of measurements,
and execution of telecommands. It also allows one to pre-plan complex mission
operations that are subsequently automatically executed. A first implementation
of this software, not including the specific details of the OUFTI-1 mission, was
realized and tested with success.
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Chapter 1

Introduction

1.1 Subject and objectives

This thesis discusses the development of the on-board processing capabilities of
the OUFTI-1 nanosatellite. This satellite is the first developed at the University
of Liége, as well as the very first nanosatellite developed in Belgium, under fully-
Belgian management. It was developed by two successive waves of students, during
the final year of their Master’s degree, in 2007 — 2008 and 2008 — 2009.

The on-board computer of the satellite plays a central and thus critical role, and
its development required a rigorous and well-structured organization. Several key
objectives for this thesis were thus defined at the very beginning of the project.

1. Identify the needs of the OUFTI-1 mission in terms of processing power.
2. Study the solutions adopted by similar nanosatellites.

3. Develop, in collaboration with the teams working on the other subsystems,
an appropriate global electrical architecture, identifying the role and the
position of the processing unit(s).

4. Design and build the hardware of the on-board computer.
5. Design an overall software architecture and fundamental building blocks.

6. Write and optimize the detailed mission-specific software.

As we will see in the following, the five first objectives were successfully fulfilled.
The sixth objective could not be completed, due to some uncertainties remaining
in the specifications of the mission, as well as in the details of other subsystems
of the satellite. Some abstraction effort was therefore needed, and led to the
development of fully-functionnal hardware, and to the development of a solid and




1. INTRODUCTION

modular software system, that can accommodate modifications of many of its
details, if needed later.

1.2 Document outline

This thesis presents the mission of the satellite, and then explains the design details
of the hardware and software parts of the on-board computer.

More precisely, Chapter 2 presents the context and the motivations of the project.
Chapter 3 details the planned mission and its requirements. Chapter 4 gives
an overview of the overall design of the satellite. Chapters 5 to 8 describe the
development of the hardware part of the on-board computer, with the analysis of
requirements, the development of a global architecture, the precise design of the
electronic circuits, and finally the practical realization of the electronic boards.
Chapters 9 to 11 describe the development of the software part, with an analysis
of software requirements, explanations of the software architecture, and details on
its practical implementation. Finally, Chapter 12 derives some conclusions and
suggests some ideas for future work.




Chapter 2

Context of project

This chapter presents the context in which the project originated, and it presents
the base ideas of the project in a conceptual manner. A more formal and exhaustive
definition of the mission will be presented in chapter 3.

2.1 The Leodium initiative

Since about 2003, there has been a desire, at the University of Liége (ULg), to
develop educational satellites. This initiative was given the name of Leodium,
which means “Lancement en Orbite de Démonstrations Innovantes d’une Univer-
sité Multidisciplinaire” (launch into orbit of innovative demonstrations of a multi-
disciplinary university), and which is also the Latin name of Liége. It started with
a participation of the ULg to the European Space Agency’s Student Space Explo-
ration and Technology Initiative (SSETI). In this context, the ULg took part in
the European Student Earth Orbiter (ESEO) and European Student Moon Orbiter
(ESMO) projects. ULg students worked on various subsystems of these satellites,
more precisely on the deployment system of the solar panels of the former, and on
a narrow angle camera for the latter.

2.2 The CubeSat concept

Not until September 2007 did the project of a completely Belgian satellite become
a reality, with the idea of building a CubeSat, proposed by Luc Halbach, sales
manager of Spacebel.
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A CubeSat is a standard type of nanosatellite, for which very precise specifi-
cations exist. These specifications, developed in the late nineties at California
Polytechnic State University (CalPoly) and at Stanford University, include precise
requirements, the most restrictive one being probably the dimensions. Indeed, the
satellite must fit in a cube 10 cm on a side, and weight no more than 1kg. Besides
dimensions, the CubeSat standard also describes a specific launcher interface, fa-
cilitating the integration of CubeSats as secondary payloads on a wide range of
commercial launchers.

Although some CubeSats have been built in industry, by large companies like
Boeing!, most of the CubeSats launched to date were built by universities. The
reasons is that they make an ideal educational project. Indeed, they constitute a
very challenging multidisciplinary project, while requiring a budget and develop-
ment time that are reasonable. This gives students the opportunity to work on
all the phases of the design of a complete satellite system, from mission design
to launch and operation. Besides educational aspects, such satellites also offer
the possibility of carrying out innovative and interesting scientific experiments in
space.

Figure 2.1: Typical CubeSat on orbit (source: AAU CubeSat website).

2.3 The OUFTI-1 project

The projected series of nanosatellites of the University of Liége were named OUFTT,
where “oufti” is a typical interjection from the region of Liége, that could translate
in Engligh into “wow”. A possible interpretation for the OUFTI acronym is “Orbital
Utility For Telecommunication Innovation”. The basic idea behind the first satel-
lite of the series, OUFTI-1, is to put on orbit the cutting edge of amateur (digital)
radio communications, namely the D-STAR system. In case of success, OUFTI-1

!The Boeing CubeSat TestBed 1 (CSTB1) mission was launched in April 2007.
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would be the world’s first satellite to feature the D-STAR radio-communication
system.

The idea of using amateur radio bands on orbit is not new: it dates back to the
early sixties, with the launch in 1961 of OSCAR-1, the very first satellite carrying
amateur radio. As another example, more recently, the International Space Station
(ISS) was also equipped with an amateur radio station; it is frequently used by
astronauts to communicate with fellow amateur radio operators.

In our case, the advantage of using amateur radio for communicating with the
satellite is significant. Indeed, the ham community offers a potentially worldwide
tracking network for OUFTI-1. It could prove very interesting to receive data
from the satellite while it is, e.g. over Japan or South America, when our tracking
station in Belgium lies well beyond the footprint of the satellite. In exchange, the
D-STAR capabilities of the satellite will be offered to ham-radio operators, who
could then use it as a repeater.

More specifically, the D-STAR system seems appropriate for our project. It is a
digital voice and data protocol, developed by the Japanese Amateur Radio League
(JARL) in the late nineties. It mainly uses the 2m (VHF) and 70cm (UHF) ama-
teur radio bands, and permits a synchronous transmission of voice and data. Tech-
nical considerations, beyond the scope of this document, and detailed in [Pisane0§],
justify its use in an application like our CubeSat. Furthermore, if the deployment
of the D-STAR protocol on OUFTI-1 is successful, this system could be reused on
future nanosatellites as the main communication means.

Two remarks are worth marking. First, D-STAR equipment for ground appli-
cations is readily available and affordable, which makes the development of our
project easier. Second, a large pool of ham-radio operators are already equiped
with such equipment throughout the world, which makes the use of D-STAR in
our project very interesting for the above reasons.

Finally, let us not forget the novel experimental and educational aspects of the
project, which make it challenging and very exciting.




Chapter 3

Overview of mission

This chapter presents the objectives of the mission, the details of operation of
the satellite, and various constraints that are imposed to us. All these elements
constitute a set of requirements, that will drive the subsequent design process.
Indeed, the entire system will be devised for the sole purpose of satisfying these
mission objectives, and for being able to operate under these constraints.

3.1 Objectives of mission

The primary objective of the project is educational. The goal is to give students
hands-on experience and to give them the opportunity to work on a real space
mission during all its phases. The consequence of this first objective is that as
many tasks as possible of the project have to be performed by students.

To fulfill this educational objective, the project is to design, build, and operate a
CubeSat in space. This primary objective leads to the definition of the primary
success criterion, which is to establish a radio contact with the CubeSat once
launched in space, and to receive its telemetry.

The secondary objectives of the mission are to use the satellite to test new tech-
nologies in space. As indicated before, the main payload of OUFTI-1 will be its
telecommunication system, which will use the D-STAR protocol. Two secondary
payloads will also be embarked: an experimental electrical power supply (later
referred to as EPS2), and a new type of high efficiency solar cells, provided by the
AzurSpace company.
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3.2 Operations of OUFTI-1 satellite system

This section presents how the satellite is supposed to behave and how it can be
used by on-ground operators.

D-STAR radio-communications

The D-STAR capability of the satellite is used to offer a repeater functionnality to
any D-STAR equipped ham-radio operator, as long as he lies in the footprint of
the satellite. He can then communicate, through our CubeSat, with another ham,
or another ground-based repeater, which also has to lie within the footprint of the
satellite.

The goal is to allow anyone to use ordinary D-STAR equipment with the satellite.
As a consequence, the frequency shift induced by the Doppler effect, inherent
to non-geostationary orbits, will have to be compensated on-board. A user in a
specific zone will need to request compensation for that zone for a specific time
on a dedicated website. The appropriate compensation will then be computed, on
the ground, and uploaded to the satellite by our ground station.

The following typical scenario illustrates this procedure.

1. User A in zone A wants to contact, through the satellite, user B, lying in zone
B, between times t; and t,. He therefore fills in a form with this information
on the website of our ground station.

2. The computer of the ground station computes the appropriate Doppler shift
corrections for the period [ty, t5].

3. At time ¢y (< t1), the satellite comes in sight of the ground station and radio
contact can be established. The computer of the ground station may first
request some telemetry to check the health of the satellite and, for example,
assess the state of its batteries. Then, if all retrieved data is nominal (after an
automatic or manual verification on the ground), the ground station uploads
the Doppler shift corrections, together with the order of activating the D-
STAR on-board repeater between times t; and t,.

4. At time t;, the D-STAR repeater is activated by the satellite, and user A
can then use it to communicate with user B.

5. Between times t; and t9, aboard the satellite, the frequency of the commu-
nication with user A (resp. user B) is regularly modified, according to the
correction tables uploaded in point 2, so that the apparent communication
frequency with the satellite in zone A (resp. zone B) is constant.

6. At time {5, the satellite desactivates the D-STAR repeater.
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Telecommands

In addition to the D-STAR channel, the OUFTI-1 CubeSat is equipped with an in-
dependent “maintenance” communication system. This system employs the AX.25
protocol, which is used to transmit telecommands to the satellite, and to retrieve
telemetry from it. It is important to mention that this “telecommand” channel is
monitored continuously, even during D-STAR operations for example. This en-
sures that the satellite always stays under control from the ground, and that it
can, for example, but shut down at any time. Note that this particular feature is
a specific requirement from the ITU Radio Regulations, that we have to comply
with (see [IARU06, ITU04|).

Secondary payloads

The operation of the secondary payloads involves mainly taking regular measure-
ments of various parameters (voltages, currents, and temperatures). These mea-
surements are performed and stored automatically at predefined frequencies, and
they are then available for download on the request of a telecommand. It is worth
noting that, on the one hand, the experimental solar cells are critical to the opera-
tion of the satellite, and are thus used at all times. On the other hand, the second
secondary payload, the experimental electrical power supply, is not required for the
normal operation of the satellite, and is only activated for testing purposes. It can
be switched on and off in predefined conditions (e.g. when crossing a predefined
threshold of the battery voltage), or on specific requests sent by telecommands.

Radio beacon

In order to maximize the chances of success of the primary objectives of the mission
(launch a satellite and establish a radio contact with it), the following fail-safe
strategy was adopted. In addition to the main precited communication means, an
independent radio transmitter, called the beacon, is included on board. It will be
active at all times, and its only task will be to take some measurements aboard the
satellite, and send them on a rudimentary (e.g. CW modulated) radio channel.
This signal could prove to be extremely useful in the event where the main systems
would not respond. The measurements sent by the beacon could, in that case, be
used to determine the cause of the possible malfunction.

It is important to note that, to be useful in emergency conditions, such a system
must be independent from the other main subsystems of the satellite.
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3.3 Constraints of mission

3.3.1 Dimensional constraints

As indicated before, OUFTI-1 will take the form of a CubeSat. This standard
imposes external dimensions that correspond to a 10cm cube. Its mass is also
limited, to 1 kg. It is worth noting that the shape constraint is only in effect during
the launch, and that after accurate timing following the ejection from the launcher,
external structures may be deployed. These typically include solar panels and radio
antennas. In the case of OUFTI-1, only the antennas need to be deployed.

3.3.2 Launcher constraints

The OUFTI-1 CubeSat is planned to be put on orbit by the Vega launcher. Vega is
a new expendable launch vehicle, developed by the Italian and the European Space
Agencies. Its maiden flight, scheduled for the end of 2009, will bring to orbit, in
addition to the main payload, six European CubeSats, including OUFTI-1.

Mechanical interface

The CubeSats are fixed to the launcher with a structure that also serves to the de-
ployment. This system is called a POD, for Picosatellite Orbital Deployer. Several
kinds of such devices exist; the one aboard the Vega launcher will be a P-POD, for
Poly-POD!. Tt consists of a rectangular box containing three CubeSats stacked on
each other. The box comprises a door, that is kept closed during the launch, and
that is opened for the ejection; the three CubeSats are then pushed out of the box
by a spring-loaded mechanism. The structure of each CubeSat must include small
springs at its base, called separation springs, to ensure that the three CubeSats of
the same POD will separate from each other after ejection (Fig. 3.2).

Electrical interface

The CubeSats do not have any electrical interface with the launcher, nor any
umbilical connections once integrated on the payload platform of the launcher.
Before the integration, the CubeSats can however be connected to some electrical
ground support equipment, typically to recharge the batteries.

!The Poly-POD is named after the California Polytechnic State University (CalPoly), where
it was developed.




3. OVERVIEW OF MISSION

Figure 3.1: P-POD perspective and cross-section (source: [CDS08]).

For safety reasons, the CubeSats cannot be powered on during the launch. A
means must therefore be included to switch on the electronics of each CubeSat
after its ejection from the POD. This is typically accomplished with one or several
so-called deployment switches, or launch switches. These small switches are placed
at the base of the CubeSat (Fig. 3.2), and they are kept (electrically) open during
the launch, as a result of the stacking of the three CubeSats inside the POD.
Following ejection, the switches close, and their closing turns on the electronics.

RAIL 1 [DEPLOYMENT SWITCHES

[SEPARATION SPRINGS]

RAIL 2

Figure 3.2: Drawing of a CubeSat showing deployment switches and separation
springs (source: [CDS08]).

10
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Ejection and timing

After ejection from the POD, a CubeSat must respect minimal timings before
its initial operations. More precisely, external structures (e.g. antennas and/or
solar panels) can be deployed no earlier than 15 minutes after ejection. Radio
transmissions may start at the same time, but only at a low power. Such low
power radio transmissions are typically those of a radio beacon. The primary
radio transmitters can only start transmissions 30 minutes after ejection.

3.3.3 Orbit constraints

Since the CubeSats are (almost) always embarked on launchers as secondary pay-
loads, they usually have to cope with the orbit chosen for the main payload of the
launcher. In our case, the CubeSats will be placed on an elliptical low Earth orbit
with the following parameters:

e perigee altitude: 354 km;

e apogee altitude: 1,447 km;

e inclination: 71°.

Figure 3.3: Ground track of the orbits of OUFTI-1 for 12 hours, computed for the
orbit parameters available in 2008 (source: [Galli08]).

The parameters of the orbit are of great importance, because they determine sev-
eral characteristics of the mission that can affect the design of several subsystems
of the satellite.

Time in view

The time in view, or access time, correspond to the time during which a particular
point on Earth will be within the footprint of the satellite, and therefore able to

11
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communicate with it. In particular, we are interested in the time in view of our
main ground station, located in Liége, Belgium.

A complete analysis can be found in [Galli08, Beukelaers09]. It was performed
by studying the best and worst cases. In the worst case, the perigee is over our
ground station in Liége, Belgium: the speed of the satellite is then the highest over
Liége, the time in view is only 30 min/day, and the maximum continuous access
time is only about 8 minutes. In the best case, the apogee is over our ground
station in Liége, Belgium: the speed of the satellite is then the lowest over Liége,
the time in view is 104 min/day, and the maximum continuous acces time is about
17 minutes. These numbers are be useful for evaluating the quantity of data that
could be transferred between the satellite and the ground station, each day, or at
once (see [Evrard09]).

Eclipse duration

The eclipse duration corresponds to the length of the periods during which the
satellite does not receive any sunlight. The satellite thus has to rely on power
stored in its batteries. A detailed study was performed in [Galli08]. What is worth
keeping in mind is that available on-board power will be limited at all times, and
that low-power consumption will often have to be the primary driving factor in
the design of the subsystems.

3.3.4 Environment constraints

Operating electronics in the space environment is particular in several ways. Here
are the three main characteristics that will have to be taken into account when
designing electronics for the CubeSat.

Thermal environment

The range of temperatures to which a spacecraft is exposed is very wide. In low
Earth orbit, these temperatures can go from -180°C to 150 °C. Moreover, the vac-
uum prevents the convection cooling of electronic components, which is typically
used on Earth. Any component that generates some heat will have to dissipate it
in some way. A careful design of the electronic boards, with this problem in mind,
is therefore needed. A detailed analysis of this problem is available in [Jacques09).

Mechanical conditions

During launch, the CubeSat will be subjected to harsh mechanical conditions
generated by the launcher: intense vibrations and a strong acceleration. This is

12
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particularly the case with the Vega rocket, since it only uses solid fuel motors for
its first three stages. Such motors typically generate even more violent vibrations
than the more common liquid fueled motors. It is therefore important to design
attachements for the electronic boards and for the electronic components on these
boards, that can withstand these conditions. Corresponding care will also be taken
in the choice of the electronic components.

A detailed analysis of this problem is available in [Pierlot09].

Radiations

The most serious concerns when operating electronics in space come from the
radiations they are exposed to. High-energy ionizing particles exist in space as
part of the natural background, referred to as galactic cosmic rays. These parti-
cles can cause temporary or permanent damage to microelectronic devices. One
distinguishes three different types of problems.

e The single-event upset is a change of state of one node in a microelectronic
device, caused by ionization in, or close, to this node. The resulting error can
be said to be a soft error, since it does not involve a permanent change to
the physical circuit. For example, in a memory device, a single-event upset
could cause the flip of a bit in the memory; however, this bit can later be
rewritten to its appropriate value.

e The single-event latchup is a temporary short circuit caused by a particle
creating a low-impedance path between the power supply rails of the circuit.
The recovery from a latchup necessitates a power cycle.

e The single-event burnout is a hard error in which the device fails per-
manently in some way. Various physical causes can lead to a single-event
burnout.

Let us note that, besides those singe-event effects, any given component can whith-
stand a limited total dose of radiation during its lifetime (called the total ionizing
dose), before failing permanently.

Around the Earth, the precited charged particles are usually trapped and con-
centrated in the Van Allen radiation belts. These two imaginary torusses are
maintained around the Earth by its the magnetic field, and the inner one extends
from an altitude of 700 km to 10,000 km above the Earth’s surface (Fig. 3.4).
In our case, the planned orbit goes through this inner belt, and our CubeSat is
thus likely to receive high doses of radiation. Protection measures must thus be
considered; these measures can be passive (e.g. a careful selection of components
or a metallic shielding around some of them) and/or active (e.g. by making the
software tolerant to single-event upsets).

13
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Figure 3.4: Representation of the Van Allen radiation belts (source: ESA Science
and Technology website).

A detailed analysis of this problem is available in [Beukelaers09].

14



Chapter 4

Architecture and subsystems of
OUFTI-1 satellite

This chapter explains how the project is divided into different subsystems, and
gives an overview of each of these subsystems.

A project as ambitious as designing a nanosatellite can only be tackled when
divided into a series of smaller subprojects. In our case, an additional, practical,
constraint, was that these subprojects, were to be handled as much as possible by
students, as the subject of their master thesis. A vertical division was therefore
carried out, which turned the project into a set of subsystems. The development of
these subsystems could therefore be carried out relatively independently, by teams
of one or more students.

Heater activation Deployment signal
THER |

A/

Radio signals

FAULT signals ‘ |
> - Control & data‘

EPS OBC = » COM BCN

EPS2

T EN signals

Enable

A A

Load select

Figure 4.1: Satellite subsystems and information flow between them.

Figure 4.1 gives an overview of the complete system, and illustrates the information
flow between the various subsystems. The following sections present in more details
each of these subsystems, with their role, the technical solution they use, and
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4. ARCHITECTURE AND SUBSYSTEMS OF OUFTI-1 SATELLITE

the requirements of their electrical interface. The electrical requirements of the
interface of each subsystem are presented in a table, that lists the individual electric
signals that are used to interface this subsystem with the other ones.

4.1 Mechanical structure

Role

The mechanical structure of the satellite must provide means of organizing and
securing all its elements together (the electrical boards, the other mechanical ele-
ments, the electrical connections between them, etc.).

Means

OUFTI-1 uses Pumpkin’s CubeSat kit as its main structure, since this solution
shortens the overall development time of the project. The internal configuration
of the electronic boards is the one proposed by Pumpkin: the PCBs are stacked
“horizontally”, and the electrical connections between the boards are accomplished
with solid (stackable) interboard connectors. The structure also provides means for
attaching the solar panels. These panels will be attached to the sides of the cube,
and thus do not need any deployment mechanism. More details on the mechanical
structure are available in [Pierlot09].

N =4
(=] -%Eﬁm{ - ¢
.&'?'.-‘ E @‘e .g/
(. | = ia g ;
L
® .
L “
>" ¥

Figure 4.2: CubeSat kit structure used for OUFTI-1 (source: Pumpkin CubeSat
kit website).

Electrical interface

Inputs Outputs

None None
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4.2 Electrical power supply

Goal

The electrical power supply (EPS) is responsible for producing electrical power,
storing it, and distributing it to the various on-board subsystems in the form they
need it (i.e. the required current at the appropriate, regulated voltages). The
EPS thus comprises solar cells and batteries, and it must also provide a means
of recharging these batteries on the ground, before launch. Its proper working
is critical to the operations of the satellite, and reliability is thus its first design
criterion.

Means

For simplicity, and thus for reliabily reasons, the EPS is chosen to be passive.
It thus comprises mainly batteries and power converters, in addition to the solar
cells. The management of the use of electrical power aboard the satellite is left to
the on-board computer (OBC), that we will introduce in Sect. 4.9. In order to
protect the global system against latchups in components of the clients of the EPS,
each of these clients is powered through a current-limiting switch. These switches
can limit the current to a predefined threshold, and they then set a FAULT signal;
this signal indicates the faulty condition to the OBC. Each switch also accepts
an EN (for enable) input signal, that can be used by the OBC to switch on and
off a particular subsystem. Note that all these switches are conceptually thought
about as being part of the EPS, even though they are individually related to other
subsystems, and physically located on the boards of these other subsystems. More
details on the EPS subsystem are available in [Thirion09].

Electrical interface

Inputs Outputs
o EN_xxx! e POWER_3.3V_BUS, POWER_5.0V_BUS,
Enable signals (one for each client of | POWER_5.0VBIS_BUS
the EPS). Regulated electrical currents at dif-
ferent voltages;
o FAULT_xxx
Fault signals (one for each client of
the EPS).

IThe suffix xxx identifies the client.

17
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4.3 Radio-communications

Goal

The radio-communication subsystem (COM) comprises, conceptually, a radio re-
ceiver and a radio transceiver. These can be used to receive telecommands, trans-
mit telemetry, and, in our case, act as a repeater for communications between two
ham-radio operators.

Means

The radio-communication subsystem of OUFTI-1 uses the D-STAR protocol. In
addition to that, and for various reasons, including safety, both the receiver and the
transmitter are capable of using another, non-experimental protocol, the AX.25
protocol. From the point of view of the OBC, let us note that the whole radio-
communication system is built with integrated circuits that are digitally control-
lable. Most of the encoding/decoding work is left to the OBC. More details on the
COM subsystem are available in [Henrard09, Mahy09].

Electrical interface

Inputs Outputs
e POWER_3.3V_BUS, o COM_ADFxxx
POWER_5.0VBIS_BUS Data and control signals from
3.3V and 5.0V currents from EPS. the (de)modulation circuits (see
° COM_ADFXXX [Henrard09, Mahy09])
Data and control signals for | e ANT_SIGNAL
the (de)modulation circuits (see Radio signal to the antennas.
[Henrard09, Mahy09]).
e ANT_SIGNAL
Radio signal from the antennas.

4.4 Radio beacon

Goal

The beacon (BCN) aboard OUFTI-1 will serve as an emergency radio transmitter,
in the case where the satellite’s main transmitter does not operate properly. The
BCN takes various measurements aboard the satellite, and transmits them via a
specific radio channel. These measurement are intended to allow the operator of
the ground control station to diagnose the health of the various subsystems.
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Means

The beacon is designed to be as autonomous as possible. In particular, it does
not rely on any other subsystem to perform the measurements. Moreover, the
development of the BCN was left in care of a completely independant team.

Electrical interface

Inputs Outputs
e POWER_3.3V_BUS e ANT_SIGNAL
3.3V current from EPS. Radio signal to the antenna.

e BCN_INPUTxx!
Analog signals representing the pa-
rameters that the beacon must mea-
sure.

4.5 Antennas

Goal

The radio-communication subsystems (COM and BCN) require two antennas, one
of 50 cm in length and one of 17 cm. These antennas can be deployed no earlier
than 15 minutes after the ejection from the launcher. A system must therefore be
devised to hold the antennas in place during the launch, and allow for a reliable
deployment once the OBC decides to do so.

Means

The antennas are made of flat wire, that is folded during the launch, and held
in place by a piece of string. For the deployment, an electrical signal feeds a
heating element that melts this string, and releases the antennas. For reliability,
two identical, redundant release systems are in fact included, and can be triggered
with distinct control signals. Note that there is no direct means in that deployment
system to check whether the antennas are correctly deployed. However, this could
be accomplished by operating the radio-communication system, and measuring
the standing wave ratio (SWR). More details on the antennas are available in
[Wertz09.

!The suffix xx identifies, with a number, each analog input of the beacon.
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Electrical interface

Inputs Outputs

e ANT_SIGNAL e ANT_SIGNAL
Radio signal to the antennas (from Radio signal from the antennas (to
COM and BCN). COM and BCN).

e POWER_? (the necessary voltage has
not yet been defined)
Current from EPS for the deploy-
ment system.

e ANTENNA-DEPLOYMENT1_EN,
ANTENNA-DEPLOYMENT2_EN
Enable signals for the two deploy-
ment systems.

4.6 Attitude control

Goal

The role of the attitude control subsystem is to keep the satellite in the best
possible orientation, with respect to the mission objectives.

Means

The radio-communication subsystem of OUFTI-1 does not require the spacecraft
to be continuously pointed in a precise direction; therefore, the attitude control
system was chosen to be passive. It is composed of magnets and rods of hysteretic
materials. They will, respectively, align themselves with the Earth magnetic field,
and dampen the rotation of the satellite. The choice of a passive system offers the
advantages of being lightweight and of not requiring any processing or electrical
power. More details on the attitude control system are available in [Hannay09).

Electrical interface

Inputs Outputs

None None

20



4. ARCHITECTURE AND SUBSYSTEMS OF OUFTI-1 SATELLITE

4.7 Thermal control

Goal

The thermal control subsystem (THER) of the satellite must ensure that all its
components are within an appropriate temperature range so that they can function

properly.

Means

The thermal behavior of the satellite was analyzed by simulations (see [Jacques09]),
and the control system was chosen to be (mainly) passive. It relies on a well
thought-out layout of the elements and on a proper choice of materials to ensure
that each component will stay within its allowable temperature range at all times.
However, the most sensitive components, the batteries, need an additional pro-
tection against the cold. They are equipped with small resistive heaters. The
activation of these heaters is to be controlled by the OBC. More details on the
THER subsystem are available in [Jacques09).

Electrical interface

Inputs Outputs

e POWER_? (the necessary voltage has | None
not yet been defined)
Current from EPS for the deploy-
ment system.

e BATTERY-HEATER_EN
Enable signal for the battery heater.

4.8 Experimental electrical power supply

Goal

In addition to the main electrical power supply, OUFTI-1 is equiped with a secon-
day, innovative, experimental digitally-controlled electrical power supply (EPS2),
that was designed in collaboration with Thales Alenia Space ETCA. Its sole pur-
pose is to be tested in space, and it has no vital role aboard the satellite.

Means

From the point of view of the OBC, the EPS2 can be seen as a black box payload
that can be activated on demand. The EPS2 uses current from the battery, and
convert it to a voltage of 3.3V. It can then either feed a resistive load, or be
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connected to the main EPS power supply rail, in parallel with the output of the
main EPS. The choice of the output can also be set by the OBC. More details on
the EPS2 subsystem are available in [Ledent09].

Electrical interface

Inputs Outputs
e EN_EPS2 e POWER_3.3V_BUS
Enable signal to turn the subsystem Regulated electrical current, fed on
on or off. the 3.3V power rail (in parallel with
e EPS2_LOAD_SELECT the main EPS).

Load select signal to connect the out-
put to a resistive load or to the main
EPS power rail.

4.9

Goal

On-board computer

The on-board computer (OBC), in short, can be said to be responsible of all
high-level monitoring and control tasks aboard the satellite. More precisely, the
following roles are attributed to it.

Perform the initial satellite operations (antenna deployment, first activation
of the other subsystems) according to a predefined sequence.

Interface with the radio-communication circuits, and perform AX.25 and
D-STAR encoding and decoding.

Handle telecommands received on the uplink channel.
Perform measurements aboard the satellite (see Sect. 4.10).
Store relevant measurements until they can be sent to the ground station.

Respond to telemetry requests by sending present or past (stored) measure-
ments.

Provide a time reference.

Perform electrical power supply management, by enabling and disabling
other subsystems in predefined conditions (e.g. when battery voltage is too
low).

Perform power cycling in case of latchup in a subsystem (detected with a
FAULT_xxx signal).

Manage the experimental electrical power supply, by enabling and disabling
it in predefined conditions.
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e Manage the D-STAR payload, by configuring it (e.g. for Doppler compen-
sation) according to data received by specific telecommands.

Means

They will be discussed beginning with Chap. 5.

Electrical interface

Inputs Outputs
e POWER_3.3V_BUS, POWER_5.0V_BUS | e EN_xxx
3.3V and 5.0V currents from EPS. Enable signals (one for each client of
e FAULT_xxx the EPS).
Fault signals (one for each client of | ¢ COM_ADFxxx
the EPS). Data and control signals for the
e COM ADFxxx (de)modulation circuits of the COM
Data and control signals from the subsystem.

(de)modulation circuits of the COM | ¢ BATTERY-HEATER_EN
subsystem. Enable signal for the battery heater.

o ANTENNA-DEPLOYMENT1_EN,
ANTENNA-DEPLOYMENT2_EN
Enable signals for the antenna
deployment mechanism.

e EN_EPS2
Enable signal for the experimental
electrical power supply.

e EPS2_LOAD_SELECT
Load select signal for the experimen-
tal electrical power supply.

4.10 On-board measurements

Taking measurements aboard the satellite is of prime importance, since it is the
only way, for the OBC, and for the operators of the ground station, to determine
the state of the satellite and of its various subsystems. Each measurements belongs
to one of the two possible categories or to both.

First, the housekeeping parameters reflect the state of the (generally) most critical
components on-board. They are very important because they bring information to
the OBC that is used to decide about some actions to perform aboard the satellite.
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For example, the temperature of the batteries is a housekeeping parameter, because
it is used by the OBC to decide when to activate the battery heater.

Second, the other measurements, that we will call the science parameters, are
not used in any automatic control loop in the satellite. They are however very
interesting for analysis on the ground. They provide information on the behavior
of the on-board systems and payloads. These parameters are typically measured
automatically and periodically; the samples are stored aboard the satellite, and
regularly downloaded for analysis on the ground.

Let us note again that a parameter can belong to both of the aforementioned
categories.

The list of measurements to be taken aboard OUFTI-1 was established with the
designer(s) of each subsystem. It was important to determine which parameters
were the most important. Indeed, the limited capacities of a nanosatellite do not
allow for an extremely large number of measurements.

The complete list of selected parameters to be measured is given in Appendix A.
Additional information is available in [Evrard09, Henrard09, Ledent09, Mahy09,
Thirion09].
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Chapter 5

Hardware: Requirements of
on-board computer (OBC)

5.1 Processing power

The first criterion for designing a computer for an application as complex as a
CubeSat is probably the processing power. Even though other characteristics,
such as power consumption, seem to be as important, a processor would be of little
interest if it cannot handle all the real-time tasks that need to be accomplished.

In our case, the critical real-time operations are related to the EPS and COM
subsystems.

First, the OBC needs to manage the use of electrical power available from the EPS
aboard the satellite. In other words, the OBC must enable and disable the various
subsystems depending, notably, on the available electrical power. The OBC must
also make the decision of switching off faulty subsystems, typically those that
draw too much current because of a short circuit. One can easily determine that
a trivial implementation of these tasks would need very little processing time on
any common microcontroller.

Second, the OBC needs to process in real time data from the COM subsystem.
Digital integrated circuits are used for the modulation and the demodulation of
the radio signals, but the encoding and the decoding of the data are left to the
OBC. In the case of D-STAR, this involves processing, for each communication
channel, a 4800 bit-per-second (bps) flow with a number of complex algorithms
((de)scrambling, (de)interleaving, (de)convolution, etc.). In the OUFTI-1 project,
the design and the programming of the COM part of the software was chosen to be
the responsibility of the COM team, and the corresponding analysis of the required
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processing power was therefore performed as part of their work. This analysis com-
prises, furthermore, the evaluation of the size in memory of the required data struc-
tures, such as software buffers. The details are available in [Henrard09, Mahy09]).

5.2 Data flow paths

To design an appropriate electrical architecture for our satellite, it is crucial to
determine where data must be exchanged in the satellite.

e Data flow paths related to the EPS subsystem

It is clear that the computer must be able to read the status of the various
subsystems, and be able to send them enabling/disabling commands. It ap-
peared clear that this information would be best exchanged through single
digital lines, especially for reliability (as opposed to a bus-based communica-
tion). However, we must keep in mind that this solution requires a significant
number of 1/0 lines on the processor.

e Data flow paths related to the COM subsystem

There is a potentially large amount of data that could have to be exchanged
with the COM subsystem (telemetry in particular). Thus, if one decides to
use a dedicated processor for the COM system, a dedicated data flow path
would be needed between this COM processor and the OBC’s processor.
Besides this, it is important to note that the digital circuits used in the
COM subsystem need a large number of digital I/O lines, on the order of 20
(see [Henrard09, Mahy09]).

5.3 Other concerns

Here are some other concerns, listed below by decreasing order of importance, that
must be taken into account in the design of the overall electrical architecture.

e Reliability

One important aspect of equipment for space is that it generally cannot
be serviced or repaired once in orbit. It is thus crucial to design fail-safe
systems, by minimizing the number of single points of failure (SPOF). A
SPOF is defined as a part in the system which, if it fails, will prevent the
entire system from working. It is therefore important to include redundancy
in the system. It is also wise to limit, when possible, the interdependence
between the various subsystems (i.e. make a component be able to work
alone if another one fails).
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Protection against radiations

For similar reliability reasons, it is desirable to have some means of protect-
ing the hardware against the effects of space radiations. Typically, these
protections would reduce, at the same time, the probability of soft errors
(single-event upsets and latchups) and of fatal events for the components
(single-event burnouts).

Power consumption

The power available aboard the satellite is extremely limited. Indeed, there is
typically less than 1W available for all the subsystems, including for the radio
transmitters. It is therefore very important to take the power consumption
into account when selecting components or communication protocols.

Analog inputs

Several measurements will have to be taken during the operation of the
satellite (see Sect. 4.10). It is therefore necessary to have the capability of
converting several analog signals to digital values.

Mass memory

It is necessary to have a way of storing data aboard the satellite. This
memory is to be used to store measurements, and information on the behavior
of the various subsystems. Therefore, there is no need for a large capacity
or for significant transfer rates.
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Chapter 6

Hardware: Architectures of
CubeSat on-board computers

This chapter presents an overview of various solutions adopted for other CubeSats,
for their overall electrical architecture and for their on-board computer (OBC). We
will then propose a specific architecture adapted to the OUFTI-1 nanosatellite.

6.1 OBC architectures of other CubeSats

6.1.1 Centralized and distributed architectures

The electrical architecture of the whole satellite, in terms of information flow, is
strongly related to the design of the OBC. Below, we discuss two general trends
that can be considered for the design of a nanosatellite.

Figures 6.1 and 6.2 illustrate a centralized architecture and a distributed archi-
tecture, respectively. In a centralized architecture, the processing power is con-
centrated in one node, the OBC. This OBC is connected to all the subsystems it
has to interact with. These connections can use either direct lines, or a bus-based
system, but this choice will often be dictated by the nature of the components the
OBC needs to communicate with. Some advantages and disadvantages are listed
in Table 6.1. Let us mention that a centralized architecture is fairly simple to
develop and to debug, but may lack some flexibility and — more importantly —
redundancy.

In a distributed architecture, each subsystem is typically equipped with its own
processor or microcontroller. Information transfer can occur between two subsys-
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Figure 6.1: Centralized architecture. Figure 6.2: Distributed architecture.

Centralized architecture

@ Less complex, thus probably more reliable

@ Communication problems between subsystems less likely
@ Simpler hardware

© Large single point of failure (the computer itself)

© Neither flexible nor scalable

© The processing power has to be shared between subsystems

Distributed architecture

@ Modular and scalable

@ Many possible communication paths
(system not entirely dependent on the OBC)

@ Independent testing of subsystems more practical

© More complex hardware and software

© One faulty subsystem could perturb the bus and thus
all the other subsystems

© As a whole, trickier to debug

Table 6.1: Pros and cons of centralized and distributed architectures.
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tems without going through the OBC. The computer’s role is typically to handle
and supervise the tasks that involve several subsystems. Such an architecture
can use point-to-point connections, but it more often uses a bus-based system.
The pros and cons of this type of architecture are also given in Table 6.1. The
main advantage is that it is more flexible and scalable than a centralized archi-
tecture. The different parts of the software may be individually simpler, and can
be developed by independant teams, but a rigourous coordination between them
is needed. Moreover, the additional intermodule communication code may add
significant development time.

Note that the two types or architecture can be combined in various ways, and
that hybrid solutions are perfectly possible. In our case, a centralized architecture
seemed to be a good choice, since the complexity of the software to be executed
on the OBC would still be reasonable. The problem of having a large single point
of failure is addressed later.

6.1.2 Processors used by other CubeSats

Table 6.2 lists a series of CubeSats together with the main characteristics of their
OBC. Note that this survey is largely based on the one realized by the SwissCube
team ([SwisscubeCDMSB]).

Processor Clock Memory Power supply
AAUSat-1
RAM: 512 kB 5V
Siemens C161 10 MHz ROM: 512 kB
150 mW
Flash: 256 kB
AAUSat-I1
RAM: 2 MB 33V
Atmel ARM7 | 8/40 MHz ' 80 mW @ 8 MHz
Flash: 8 MB
300 mW @ 40 MHz
CanX-1
RAM: 512 kB 33V
Atmel ARM7 | 40 MHz ROM: 128 kB '
400 mW
Flash: 32 MB
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Processor Clock Memory Power supply
CP1 and CP2
RAM: 4 kB v
PIC 18LF6720 4 MHz ROM: < 1 kB
< 10 mW
Flash: 128 kB
CubeSat XI-IV
PIC 16F877 4 MHy RAM: 368 bytes 5V
ROM: 32 kB 10 mW
CUTE-1
RAM: 512 kB
Hitachi H8/300 unknown ROM: 256 kB unknown
Flash: 4 MB
DTUSat-I
RAM: 1 MB
Atmel AT91M40800 16 MHz ROM: 16 kB unknown
Flash: 2 MB
KUTEsat
RAM: 512 MB 13V
PIC 18F4220 8 MHz ROM: 4 kB '
< 10 mW
EEPROM: 256 bytes
Mea Huaka’s
Z-World RAM: 368 byt oV
aer 1.8 - 30 MHz ‘ YIS Max: 650 mW
RabbitCore RCM2000 ROM: 32 kB )
Typical: 300 mW
MEREOPE
AM: 1 kB
Freescale MC68HCR12A4 8 MHz R oV
EEPROM: 4 kB 150 mW
nCube
RAM: 2 kB 53V
Atmel AVR ATmega32L 4 MHz ROM: 32 kB .
12 mW

Flash: 1024 bytes
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Processor Clock Memory Power supply

Pumpkin CubeSat Kit FM430 (Delphi C-3, Libertad-1, ...)

Texas Instruments S M RAM: 5 or 10 kB 33Vorb V
7z
MSP430 Flash: 50 or 55 kB < 10 mW

Sacred and Ricon

5V
< 10 mW

PIC 16C77 4 MHz RAM: 64 kB

Table 6.2: Characteristics of processors and microcontrollers used in other Cube-
Sats.

It can be observed from this survey that a very broad range of microcontrollers
and microprocessors are used in nanosatellites. These components exhibit very
different performances and power requirements. We can therefore conclude that
there is no one-fits-all solution to the choice of a processor for the OBC of a
CubeSat. This choice will thus essentially be based on the requirements of the
mission.

6.2 OBC architecture of OUFTI-1

6.2.1 Processor of OUFTI-1

In the above overview of solutions, one of the solutions seemed particularly attrac-
tive in our situation: Pumpkin’s FM430 flight computer (Fig. 6.3). Its very low
power consumption, and the fact that it has already flown several times in space,
make it very attractive. It also seemed reasonable to us not to start from scratch,
but rather from a proven and off-the-shelf solution. Using an FM430, or at least
on of the Texas Instrument’s MSP430 microcontrollers, thus became the baseline.

The COM team had to determine whether the processing capabilities and the
memory ressources of an MSP430 would be sufficient to process D-STAR data. A
preliminary analysis led to a positive conclusion, and allowed us to design a cen-
tralized and quite simple architecture. A single processor could indeed take care of
all the “intelligent” tasks aboard the satellite. This eliminates the need for complex
— and failure-prone — communication interfaces between multiple processors.

As indicated before, the main drawback of a centralized architecture is that it
presents a large single point of failure: the processor itself. This issue is addressed,
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Figure 6.3: Pumpkin’s FM430 (source: Pumpkin CubeSat kit website).

in our case, by adding a second, fully redundant processor to the first one. The
strategy consists in the following: as long as one computer, called the default OBC
(later referred to as OBC2) is working properly, the other one, named the backup
OBC (later referred to as OBC1) stays silent but monitors the activity of the other
one. In the event where the default OBC becomes ineffective, the backup OBC
detects this situation, and immediately takes over by starting, by itself, to control
the normal sequence of operations.

This approach is practically very effective, and, moreover, very simple to imple-
ment. Indeed, at least conceptually and at the hardware level, all the correspond-
ing I/O pins of both processors can be tied together. Unfortunately, Pumpkin’s
FM430 boards use a predefined bus standard, namely the CubeSat bus, which
includes various signals that cannot be directly connected together between two
FM430 board (see Appendix B). Simple approaches were proposed, such as fitting
a custom board between two FM430s, and interrupting the problematic signals
at that level (e.g. by removing the corresponding physical pins of the connec-
tor). Another solution was however chosen. It consists in developping a custom
computer board, in place of one of the FM430s. This board would basically be
a simplified replica of an FM430, but it would give us more flexibility, as well as
the expertise and the experience needed to avoid being limited to use commercial
boards (FM430s) in our future CubeSats.

This custom board, that we chose to name OBC2, is chosen to be the default OBC,

whereas the FM430, considered more reliable, and named OBCI1, is chosen to be
the backup OBC.

6.2.2 Peripherals of the OBC of OUFTI-1

The MSP430 offers very little internal memory (55 Kb at the maximum), so we
decided to include an external storage memory. Pumpkin’s FM430 includes a SD
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card socket and electrical interface, but SD cards are relatively power hungry, and
their capacity is well beyond our needs. We therefore decided to include a small
EEPROM chip, than we can chose to be more adapted to our needs.

The MSP430 includes a 10-bit, 8-channel, analog/digital converter (ADC), but we
need, in our application, much more than 8 analog inputs. We therefore chose to
use external ADCs. The internal ADC of the MSP430 is not used at all, which
allows us to use its inputs pins as digital I/O, rather than as analog inputs.

6.2.3 Data flow paths in OUFTI-1

As indicated before, using a centralized architecture allows one to simplify the
communication means between the subsystems inside the satellite. The following
solutions were adopted.

e Data flow paths related to the EPS subsystem

We use single I1/O lines to read the status of, and enable/disable, the various
subsystems.

e Data flow paths related to the COM subsystem

The modulation/demodulation integrated circuits are controlled via a set of
dedicated I/O lines.

e Data flow paths related to the EEPROM and ADCs

These peripherals where chosen with an I?C interface. This makes their phys-
ical placement on different boards in the satellite easier (which is desirable
for the ADCs).

6.2.4 Protection against radiations

Various measures can be taken to limit the impact of radiations on the electronics.

The first approach, traditionnally applied in the space industry, is to use exclusively
radiation-hardened, or rad-hard, components. These are, by design, much less
vulnerable to radiations. Their availability may however be a problem, and their
cost would be prohibitive in a project like ours.

The second approach is to purchase common components in lots, and to perform
a screening to select the most resistant ones. This can be done, e.g. by exposing
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them to a small source of radiations and by counting the occurrences of non-
destructive single-event effects ([Cutler06, Kayali00]). The drawback is that this
method could take a lot of time, and needs specialized equipment.
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Figure 6.4: Total dose of radiation received during one year aboard OUFTI-1
under various thicknesses of aluminum shielding (source: |Beukelaers09]).

The third approach is to provide an additional external shielding, either to the
whole electronic board, or to the most sensitive components. This is usually
done with aluminum boxes or screens, since they provide an appreciable shield-
ing against most types of radiations for a minimal weight. Figure 6.4 shows the
total received dose aboard OUFTI-1 during one year, under various thicknesses
of aluminum shielding; it can be observed that a shielding of 2 or 3 mm already
gives a significant protection. As an indicator of usefulness of the various levels of
shielding, Table 6.3 gives typical failure doses for various kinds of (non rad-hard)
electronic components (|Cutler06]). This third approach was selected for our mis-
sion, but, to date, it has not been decided whether this shielding would protect
the entire satellite or only particular components.

Components Failure dose (KRadSi)
Linear IC’s 2 -50
Mixed signal 1C’s 2-30
Flash memories 5—-15
DRAMs 15 - 50
Microprocessors 15 - 70

Table 6.3: Typical failure doses of various types of commercial off-the-shelf elec-
tronic components (source: [Cutler06]).
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A detailed analysis of this problem is available in [Beukelaers09]. A discussion on
the use of global shielding or local shielding for OUFTI-1 is available in [Pierlot09].

6.3 Overall electrical architecture of OUFTI-1

Appendix C shows the overall electrical architecture that results essentially from
the various choices that have just been made and justified.
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Chapter 7

Hardware: Design of the OBC
electronic boards

This chapter presents in detail the design of the two electronic boards of the
OUFTI-1 OBC. As a reminder, the first board, OBC1, is Pumpkin’s FM430, which
is available off-the-shelf; the second board, OBC2, is a custom board, which we
discuss the design of in Sect. 7.2.

7.1 OBC1: Detailed analysis of the FM430 board

Before starting to work on the design of the custom board, OBC2, we began by
carefully analyzing how the FM430 (OBC1) was designed. This analysis task did
not pose much problem since we had at our disposition a block diagram (Fig. 7.1)
and all the electrical schematics of this board ([Pumpkin08]).

We now describe the various functionnalities of the FM430 board. We also indicate
the features that will be carried over from OBC1 to our homemade OBC2.

e Clocks

The MSP430 features two internal crystal oscillator circuits. On the FM430,
one of the MSP430 oscillators is connected to an external 32.768 KHz watch
crystal, and the second is connected to a 7.3728 MHz crystal. Note that the
frequency of this second crystal is close to the maximum of 8 MHz allowed
by the MSP430. We will include the same crystals on OBC2.

e JTAG
The FM430 includes a connector for the JTAG interface of the MSP430. This
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Figure 7.1: Pumpkin’s FM430 block diagram (source: [Pumpkin08]).

allows in-circuit programming and debugging of the MSP430. This useful
feature will also be included on OBC2.

e USB connector and electrical interface

A USB port is connected, through a specialized circuit, to one of the UARTS
of the MSP430. This connection can be used for on-the-ground testing
phases. Since the I/O pins of the specialized circuit are available on the
CubeSat bus, the OBC2 will be able to use the USB interface as well. There
is thus no need to add another USB connection on OBC2. Note also that
there is no need for redundancy since the USB port is only used on the
ground.

e External 5V power

This large connector is provided for powering the board on the ground with
an external 5V power supply. This feature will not be used and is thus not
included on OBC2. For testing the satellite and recharging its batteries on
the ground, we will feed the satellite with 5V current through the USB port.
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e MHX transceiver socket and electrical interface

The MHX transceiver is an off-the-shelf radio modem, that can be interfaced
with the FM430. Since we developed our own radio-communication system,
this feature is useless in our case. This feature is thus not included on OBC2.

e SD card socket

As explained earlier, we will not be using an SD card for mass storage. This
feature is thus not included on OBC2.

7.2 OBC2: Design of the custom board

The design of OBC2 was quite straightforward, thanks to its simplicity and to the
small number of circuits needed. Here are, however, several points that did require
some special attention, particularly for the choice of the components.

e I/0s

The corresponding 1/0s of OBC1 and OBC2 are connected together. In the
case of a malfunction, two connected pins could be configured as outputs
and this could lead to a short circuit. To mitigate the consequences of such
a situation, we added small 100 2 resistors in series with each I/O pin of the

OBC2’s MSP430.

e Crystals

Two crystals are used. They were carefully chosen in our distributor’s cata-
log, so that their temperature-induced frequency drift is as small as possible.

e Power supply

Whereas the FM430 needs a 5.0V power supply (the needed 3.3V being
converted on-board), OBC2 was chosen to use directly a 3.3V power supply
voltage. This was decided together with the EPS team, for reliability reasons
(so that the different OBCs use different converters of the EPS). This 3.3V
voltage is generated on the EPS board. Therefore, no regulator is needed on
OBC2. However, the OBC2 still includes the same current-limiting switch
as the one of the FM430 (a Maxim MAX890).

e EEPROM

We decided to use a small EEPROM as our mass storage memory. After re-
viewing the available products of several manufacturers, we initially selected
the following candidate components (each with an I?C interface).
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Size Supply voltage | Operating current | Max I?’C clock

Atmel AT24C1024

Standby: 3 pA
1024 kbit | 2.7V to 5.5V Read (max): 2 mA 400 KHz
Write (max): 5 mA

Microchip 24LC1025

Standby: 100 nA
1024 kbit | 2.5V to 5.5V | Read (max): 450 pA 400 KHz
Write (max): 5 mA

Renesas HN58W 2410001

Standby: 1 pA
1024 kbit | 2.5V to 3.6 V Read (max): 1 mA 1 MHz
Write (max): 4 mA

The Microchip 24LC1025 was finally chosen for its low power consumption
and good availability.

Connectors

The main interboard connections inside the satellite use the same connector
as the one used on the FM430, namely the CubeSat bus (Fig. 7.2). It
consists in fact in a pair of stackthrough connectors, available from Samtec
under the reference ESQ-126-39-G-D.

Figure 7.2: Connectors of the CubeSat bus (reference in text)

The JTAG connector is an 8-pin FPC (Flexible Printed Circuit) female con-
nector. A reference is given in the electrical schematics, the Hirose FH10A-8S-
1SHB, but it appeared that Hirose no longer manufactures the 8-pin version
of this product. After some research, we found a similar component, manu-
factured by Japan Solderless Terminals, under the reference 08FMS-1.0SP-TF
(Fig. 7.3).
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e o

Figure 7.3: FPC connector used for the JTAG interface (reference in text).

After selecting all the components, we realized the electrical schematics of OBC2,
using Altium Designer. They are given in Appendix E.

7.3 Interboard communication bus

The electrical connections between the different boards are done through a bus
made of “stacktrough” connectors (Sect. 7.2). During the development of the
different subsystems, I supervised the allocation of this bus. Although it took a
lot of time, effort, and iterations to satisfy every team’s needs, there is little to say
on this task, except to state the final decision reached, and make a few remarks.

Here are thus a few remarks on some details that did deserve some special attention.

e Some pins of the CubeSat bus are used on the FM430 for some very specific
signals, that are of little use in our application (such as, for example, the
signals related to the MHX radio interface). Unfortunately, most of these
pins cannot serve for another use, since other signals could interfere with the
hardware connected to these pins on the FM430. It is to be noted that, in
our future satellites, where no FM430 will most likely be used, these pins
would get freed-up and could be used to carry custom signals.

e Some power lines can carry large currents (e.g. the POWER_xxx_BUS lines),
and each of these lines was thus distributed on two (adjacent) physical pins.

e Some analog signals have to transit through the bus to the radio beacon
(BCN) board. These signals were grouped together at one end of the CubeSat
bus. This minimizes the interference caused by digital signals carried on
other pins of the bus.

e One pin is used to carry each of the I2C bus SCL and SDA signals. When
routing PCBs, it is a common practice to route a ground track between these
two signals. For the same reason, in the allocation of bus, we chose to place
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a pin connected to the ground, in-between the pins of the two I?C signals.
This also makes the routing of the PCB of the OBC2 slightly easier.

The resulting allocation of the bus is summarized in the table given in Appendix D.
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Chapter 8

Hardware: Practical realization of
the OBC electronic boards

This chapter presents the practical development of the real electronic boards. The
first section presents a general plan for the prototyping and manufacturing stages,
which was a common strategy for all the electrical subsystems of the CubeSat.
The second section explains how this strategy applies to the particular case of the
two on-board computers (OBCs).

8.1 General strategy for prototyping and fabrica-
tion

A general strategy for the prototyping and the manufacturing of the electrical
subsystems was proposed at the beginning of the OUFTI-1 project. It consists in
developping different prototypes at the various stages of the design process.

The breadboard model is the first one to be built. It may not be complete or
fully functionnal, but it is the one that should serve most of the developments

and of the experimental tests. Several iterations of this model are likely to
be needed.

The engineering model is closer to the final version. Its electrical circuit and
the components used should be the same as in the final model, but the board
may not satisfy the flight size and weight constraints. Its main purpose is to
be interfaced with all the other subsystems, so that a complete prototype of
the satellite can be tested.
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The flight model is the final version of the board. It is ready to be integrated
in the CubeSat with the other subsystems. Several instances are likely to
be manufactured, e.g. to serve vibration tests, to undergo additionnal tests
when the satellite is on orbit, or for demonstration purposes.

8.2 Strategy for prototyping and fabrication ap-
plied to the OBC

8.2.1 Breadboard models

The CubeSat kit, that was purchased from Pumpkin, includes the FM430, which
will be our OBC1, but it also includes a development board, or devboard, that
served us as the breadboard model of both the OBC1 and the OBC2. This devel-
opment board is shown in Fig. 8.1. Tt basically is an enlarged replica of the FM430,
with some extra functionnalities, such as an RS-232 interface, and connectors to
allow powering it with a benchtop power supply. This devboard was very useful,
since it allowed us to start experimenting and coding software very early, without
having to wait for the fabrication of custom prototypes.

In addition to the devboard provided by Pumpkin, we built a small complementary
test board. This board, represented in Fig. 8.2 and 8.3, plugs onto the CubeSat
bus connector of the devboard, and adds additional testing capabilities to it. Tt
includes several T2C devices (an AD7997 ADC and an LM75 temperature sensor),
LEDs for visualizing the state of digital outputs and various connectors. These
components were obviously not to be implemented in the subsequent prototypes of
the OBC, but they allowed us to test various bits of software, such as, for example,
the code to handle I?C devices.

8.2.2 Engineering models

The engineering model that was used for the OBC1 was, again, the development
board provided in the CubeSat kit. As we said before, its design is — electrically —
very close to the one of the flight module (FM430). Note that it includes the
CubeSat bus connector that allows one to plug other boards, for interconnection
tests.

For the OBC2, a first engineering model was designed as early as January 2009. T
used the Altium Designer! software to manually route the PCB. I chose to route

!See http://www.altium.com/products/altiumdesigner/.
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JTAG interface MSF430 microcontroller CubeZat bus connector

\ for plugging other boards

USB interface RS-252 interface (not used)

Figure 8.1: Development board provided with the FM430.

——— Power leads

CubeSat bus connector

8l 1°C temperature sensor
[*C ADC —_§

Potentiometer connected
to one input of ADC

Figure 8.2: Custom test board.
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Figure 8.3: Custom test board, plugged onto the development board.

it on only two layers, to make prototyping faster and cheaper. However, with
only two layers, routing the 52 I1/0O signals between the microcontroller and the
bus connector was particularly tricky. Some connections were left to be connected
with loose wires, which was not a problem, since these connections were not likely
to be needed in most of the interconnection tests that this prototype was devised
for. Appendix G gives an overview of the design of this PCB, which was manu-
factured by Olimex (http://www.olimex.com), a fast PCB prototyping company
I have good experience with. Figure 8.4 shows the prototype at different stages of
assembly. Note that T hand soldered all the components of the prototype.

Two months after having designed the first engineering model, it was decided, for
the whole project, to get all the electronic boards fabricated and assembled at a
local company, Deltatec!. This company has experience in the design of hardware
for aerospace applications, and their expertise was judged to be a plus for the
project.

More precisely, four reasons justifies this strategy. First, we benefit from the
experience of Deltatec in the routing and in the assembly of electronic boards,
including for space applications. Second, this strategy permits to accelerate the
general realization process, and it allowed other teams to test their hardware before
completing the write-up of their thesis — although this was not necessary in my

!Deltatec is located in Ans, Belgium; see http://www.deltatec.be.
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Figure 8.4: First engineering model during assembly.

case, since a homemade prototype was already built before the one of Deltatec.
Third, this strategy guarantees a uniformity in the realization and in the quality
of the various electronic boards of the satellite. Fourth, it provided experience for
the students in interacting with a commercial company, which forced us to prepare
a thorough set of specifications, and to take responsibility for the various choices
made in the designs.

We provided Deltatec with the schematics of the OBC2, which they re-encoded in
their standard electronic design software. The re-encoded schematics can be found
in Appendix F. The PBC was then re-routed, on four layers this time. Shorter
track widths and clearances were also used, but is it interesting to note that the
overall area used on the PCB is roughly the same on the two engineering models. It
is also worth noting that the expertise of Deltatec for the routing was particularly
useful. They took much more care of the specifics of space equipment during
the design of the PCB, such as thermal issues or potential electrical pertubation
problems. For example, special pads under the integrated circuits were included,
to carry away the heat they can generate. Another common practice in space
electronics is to never let floating input or output pins on any integrated circuit.
This practice eliminates potential entry points for electrical perturbations (due to
radiations for example). The problem of the mechanical resistance to vibrations
was addressed by providing each components with pads slightly larger than usual.
This allows a larger amount of solder to hold the components, which provides
better mechanical fixation points. Figures 8.6 and 8.5 show the engineering model
provided by Deltatec.

8.2.3 Flight models

The flight model of the OBC1 is the FM430 itself (Fig. 8.7). The flight model
of the OBC2 has not been built yet, but it will be provided by Deltatec as well.
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Figure 8.5: Engineering model provided by Deltatec.

__— CubeSat bus connector
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2 — Current-limiting switches

JTAG interface — of microcontroller and EEFRCM

7.3728 MHz crystal = — |°C EEPROM

— MSP430 microcontroller
32.768 KHz crystal —

Figure 8.6: Annotated view of the engineering model provided by Deltatec.
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Since the functionnal tests of the OBC2 engineering model did not show any
particular problem, no major changes are expected to be required for the flight
model. Soldering should however be done differently, with a high lead content
alloy. This will offer better resistance to the vibrations of the launch, to the large
temperature variations encountered in space, and will avoid the accidental growth

of tin whiskers (see [Drevon05]).

Figure 8.7: Pumpkin’s FM430, attached to the bottom panel of the mechanical
structure of the CubeSat.
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Chapter 9

Software: Requirements and
organization

In this chapter, we introduce the on-board software of OUFTI-1. We first identify
the required functionnalities of the software, and we then present a partitioning of
the software into modules, and justify how these modules can take care of all the
required functionnalities of the OUFTI-1 system.

9.1 Identification of software functionnalities

Before designing the architecture of the software of a significant project, one must
first determine the exact requirements and the desired behavior of the finished
product. In our case, this task was not easy. Indeed, because of the general
planning of the project, we had to start thinking the development of the software
even tough a significant number of unknowns did remain, including at the very
top level of the mission requirements and mission implementation!. We therefore
had to formalize these requirement in a quite abstract way, that could allow a
maximum number of variations of these unknown parts. These requirements, or
software functionnalities, are listed below. Note that they are similar, but not
identical, to the general “OBC roles” of Sect. 4.9.

1. Perform the initial satellite operations (antenna deployment, first activation
of the other subsystems) according to a predefined sequence.

2. Perform AX.25 and D-STAR encoding and decoding.

1At the time of this writing, several unknowns remain, mainly in the overall hardware ar-
chitecture, the strategy for making D-STAR work in space, and the number and location of
processors throughout the satellite.
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3. Handle telecommands received on the uplink channel.

4. Perform measurements of housekeeping and science parameters aboard the
satellite.

5. Store relevant measurements until they can be sent to the ground station.

6. Respond to telemetry requests by sending present or past (stored) measure-
ments.

7. Provide a time reference.

8. Perform power supply management, by enabling and disabling other subsys-
tems in predefined conditions (e.g. a low battery voltage).

9. Perform power cycling in case of latchup in a subsystem (detected with the
FAULT xxx signals).

10. Manage the experimental electrical power supply (EPS2), by enabling and
disabling it in predefined conditions.

11. Manage the D-STAR system, by configuring it (e.g. for Doppler compensa-
tion) according to data received via specific telecommands.

12. Keep a log of meaningful events happening aboard the satellite, that can
then be retrieved with one or more specific telecommands.

13. Monitor, for the backup processor (OBC1), the activity of the default pro-
cessor (OBC2) and detect when it stops functionning.

9.2 Organization of software into layers and modules

9.2.1 Traditional organization of satellite on-board software

Any large or complex software project has to be subdivided into subproblems in
order to be implemented efficiently. In the traditional space industry, the on-board
software of a satellite system is typically divided relatively to two dimensions (Fig.
9.1, and |Parisis08a, Parisis08b]).

On the one hand, horizontal divisions separate parts of the software relatively to
their dependence on hardware. The top layer is strictly mission dependent, and it
handles the high-level tasks of the system (electrical power management, thermal
management, payload activation, etc.). The bottom layer interfaces directly with
the hardware. The intermediate layers provide so-called common services, i.e. the
services that do not directly depend on the particularities of the mission and of the
hardware. These services can include, for example, a file system for data storage, or
the basic handling of telecommunications. This separation permits to easily reuse
a maximum of the developments from one project to another. For example, the
common services are generally necessary to any mission and can then be reused.
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The hardware drivers can also very often be reused, as long as the platform of
the satellite (all but the mission-dependent subsystems of the satellite) remains
essentially the same.

R DD Cd D
MISSION AOCS POWER THERMAL PAYLOADS

Mission
Specific
Applications

Common
Framework

Services
l"'ﬁ 1 purt Package I

BSW & RTOS I/F

Middleware [~

Figure 9.1: Typical organization of the on-board software of a traditional satellite
(source: [ParisisO8al).

On the other hand, vertical divisions separate parts of the software relatively to
the functionnalities of the system. This is particularly apparent for the top layer,
where, for example, the payload management module is well separated from, say,
the power management module. This vertical division allows one to clearly orga-
nize the code, and permits easier reuse and independent development of different
parts of the software.

9.2.2 Organization of on-board software of OUFTI-1

The ideal subdivison scheme that we just presented is conceptually very interesting,
but it is not well suited to the OUFTI-1 project. The software that we have to
implement is much simpler than the software of a traditionnal (commercial or
defense) satellite. An “overdivision” of the software could make it unnecessarily
cumbersome, which would be a problem with the limited memory and processing
power available.

For the horizontal division, we still identified a useful partitioning for our soft-
ware, into two layers (Fig. 9.2). The bottom one, which we can call the device
driver layer, provides drivers for the physical devices we have to interact with
(e.g. the external ADCs, some internal modules of the microcontroller). These
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drivers consists in functions that can be called from another layer to interact with
these devices. The top one, which we can call the application layer, includes all
the main functionnalities of the system. This application layer is itself vertically
divided into different modules. The modules that we defined cannot be deduced
directly from the list of functionnalities identified in Sect. 9.1, but they allow one
to handle all of these functionnalities in a very efficient way, while still being very
modular. Fig. 9.2 shows which functionnalities are handled by each module (the
numbering refers to that of Sect. 9.1). Below, we give a basic description of each
of these modules.

(%]

,E Monitor Com. Sequencer | | Measurement Log Clock
_@ Functions: Functions: Functions: Functions: Functions: Functions:
28,9 2 1,3,6,11 4,5,8,10 12 7

<

2 | ADC | | EEPROM |

2

5 12C | Watchdog | | UART/USB

Figure 9.2: Organization of the on-board software of OUFTI-1.

The monitor module is responsible for handling the major status changes aboard
the satellite, i.e. the decision of enabling or disabling the various subsystems.
These decisions are taken on the basis of some requests from the other mod-
ules (themselves based, e.g. on the measurement of on-board parameters),
as well as on the status of the current-limiting switches of the power sup-
ply, sensed directly by the monitor module (via the FAULT xxx signals, see
Sect. 4.2).

The communication module encompasses all the functions related to the han-
dling of D-STAR and AX.25 encoding/decoding. It outputs the telecom-
mands that may have been decoded, and takes as input the parameters of
the transmission (e.g. the Doppler-effect frequency correction). It can also
be fed with telemetry, to be sent on the downlink channel.

The sequencer module is a generic module that handles all the telecommands
coming out of the communication module, as well as other commands that
have been generated on-board by other modules. All these (tele)commands
are accompanied by their planned execution time. The role of the sequencer
is to execute these commands at the specified time. The (tele)commands
that need immediate execution are accompanied by a special tag, and are
handled first by the sequencer.

The measurement module takes care of performing the measurements of the
two kinds of parameters already defined (Sect. 4.10). The housekeeping
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parameters, sampled at a relatively high frequency, are processed in real
time, in order to request changes of status (i.e. to request to enable or
disable specific subsystems) when needed. The requests for change of status
are then handled by the monitor module. The science parameters, that are
not used in the control loop of the operation of the satellite, are sampled at
a lower frequency, and then immediately written into non-volatile memory
(the external EEPROM). These measurements can be sent back to Earth
later upon request, with a telecommand (handled by the sequencer module).

The log module is responsible for storing a list of meaningful events happening
aboard the satellite. Any other module can post an event to the log module,
that will take care of storing it in the external EEPROM. The log module
also provides an interface to access the stored list of recent events; it can be
accessed to be sent down to Earth, upon request of a telecommand (handled
by the sequencer module).

The clock module maintains a time reference, with a resolution of one second.
This resolution is appropriate for the needs of the mission. The current value
of the clock can be accessed by any other module.

Details and explanations on how each task is handled by these modules are given
in Appendix 1.
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Chapter 10

Software: Architecture

This chapter presents the architecture of the on-board software of OUFTI-1. We
first discuss task scheduling, and we then present the actual architecture proposed
for the OUFTI-1 software.

10.1 Scheduling of software functionnalities

10.1.1 Methods of scheduling

The on-board software of OUFTI-1 presents the characteristics of a real-time sys-
tem, because of the fact that it has to handle various external events and perform
actions with timing constraints. This section presents three alternatives to orga-
nize such software, so that all of its functionnalities are executed with respect to
their timing constraints.

Cyclic executive

The cyclic executive is the simplest form for implementing real-time software. Tt
consists of one infinite loop in which all the tasks of the software are executed.
Delays are typically introduced in the loop to ensure a constant periodic execution.
There is thus one main control flow, which can however be completed by the han-
dling of interrupts. This simple organization gives the advantage of being simple to
analyze, and limits the needs of synchronization or message-passing mechanisms.
The limitations of such a system are however obvious: the rigid structure does not
allow one to easily execute functions at different rates, and it does not allow either
to assign different priorities to different functionnalities of the software. This last
feature would be however desirable in our case. For example, telecommunication
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functions are far more time-critical than logging functions; indeed, they have to
be executed in a timely manner with respect to the baud rate of the transmission,
whereas the writing in the log of an event tolerates a delayed execution. This first
solution is thus not suitable for our system.

Cooperative multitasking

Multitasking is the method that permits to execute multiple tasks on a single
processor, using mechanisms provided by an operating system (OS). Its simplest
form is the cooperative multitasking, in which each task has the responsibility
of initiating the context switch necessary to allow another task to execute. This
permits the OS to be relatively simple, and gives the programmer the advantage
of choosing where the execution of each task can be interrupted. The drawback is
that a faulty task (due to programming errors, hardware failure, code corruption,
etc.) can cause the whole system to hang. This could lead to serious problems in
a system like ours, and this solution was therefore discarded.

Preemptive multitasking

In a preemptive multitasking environment, it is the responsibility of the OS to
decide when to perform a context switch. A task may thus be interrupted at any
time. Each task is usually assigned a priority, in order to ensure that the most
critical tasks are given a greater share of available processing time.

10.1.2 Choice of operating system for the on-board software
of OUFTI-1

After determining than the best suited type of OS for our project was a preemptive
multitasking OS, we looked for one such OS that was available, off-the-shelf, and
ideally with an architecture port for the MSP430. We found that FreeRTOS! pre-
sented these characteristics. It is an open-source, lightweight real-time operating
system, freely available, and known to be reliable?. We examined its exact require-
ments, especially its memory footprint in ROM and RAM (see [FreeRTOS]), and
we concluded that it was ideally suited for our project.

Let us also note that FreeRTOS provides an API for using task synchronization
mechanisms, including mutexes and semaphores, as well as the means needed to
implement periodic tasks.

!See http://www.freertos.org.
2A sister project of FreeRTOS, SafeRTOS, is based on similar components, and is certified
for use in safety-critical applications.
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10.1.3 Identification of tasks in the on-board software of
OUFTI-1

Having determined that we will use an OS, we must then identify the tasks to be
handled by this OS. We decided to allocate one task to the monitor module, one to
the sequencer module, one to the measurement module, and one to the log mod-
ule. Let us note that, first, the case of the clock module is discussed Sect. 10.2.7.
Second, we excluded the communication module from most of the following dis-
cussion, due to the uncertainties still related to the hardware implementation of
the COM subsystem (details are available in [Henrard09, Mahy09]).

It is generally desirable to limit as much as possible the number of tasks, for sim-
plicity reasons, already mentionned in Sect. 10.1.1, but also to limit the memory
and processing ressources needed by the scheduler to handle these tasks. We an-
alyzed all the possibilites of grouping two or more modules of our software in a
single task, but none of these was deemed acceptable.

As an example, let us discuss the potential grouping of the monitor and mea-
surement modules. This may look interesting at first sight: the measurement
module samples the housekeeping parameters, that are analyzed to generate a
requestedStatus shared data structure, which is then handled by the monitor
module. Grouping these two modules thus also allows one to eliminate this shared
data structure. However, the measurement module also has to sample the science
parameters, at frequencies other than for the housekeeping parameters. The rel-
atively high frequency of execution of the monitor module does not allow one to
perform these measurements in the monitor task, and another task would therefore
still be needed. We thus concluded that it was simpler to keep the conceptually
simple solution of one separate task for each of the monitor and measurement
modules.

The analysis of other possibilities for grouping several tasks together lead to the
same type of conclusions, due to the differences in the frequencies of execution
of these tasks, or to the differences in the criticality of the functionnalities they
handle.

10.2 Architecture of software modules

This section presents the functionning details of each software module. It is ad-
visable to read the following discussion while keeping an eye on the global static
structure diagram, in Appendix J.

o7



10. SOFTWARE: ARCHITECTURE

L
«:j:\/Receive heartbeat > Received
T
\
Timeout
A 4 ¢
‘ Create tasks ‘ ’ Create tasks ‘
Com. Measur. Com. Measur.

Monitorgequenceg Log Monitor Sequenceg Log

é

Figure 10.1: Flowchart of the initial- Figure 10.2: Flowchart of the initial-
ization of the software for the default ization of the software for the backup
processor (OBC2). processor (OBC1).

10.2.1 Initialization of software

The initialization part of the software corresponds to the work executed prior to
the creation of the tasks and prior to the execution of the scheduler of the OS. This
is one of the two main places where the code of the backup processor (OBC1, the
FM430) and the code of the default processor (OBC2, the custom board) have to
be different. The default processor does not require to do anything particular (Fig.
10.1), but this is where the backup processor monitors the heartbeat signal of the
default processor (Fig. 10.2). This signal is chosen to be a simple message on the
existing I2C bus; the complexity of this mechanism seemed perfectly suited to the
problem, and, moreover, it does not require to allocate particular 1/O lines to this
function. This solution furthermore allows us to keep the backup processor in one
of its low-power modes most of the time, by using its internal hardware devices to
perform most of the monitoring work: the hardware I?C circuits integrated into the
MSP430 are responsible for receiving the message, and the internal watchdog timer
of the MSP430 is responsible for starting the control of operations if no heartbeat
message is received during a long time. This allows the backup processor to be
active for only a few dozens of cycles per second, keeping its power consumption
extremely low.

Note that this is the only part of the software where the sequence of operations
is really different between the two processors. The distinction between them will
therefore not be made in the rest of the discussion.
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10.2.2 Architecture of the monitor module

The monitor module is implemented in one specific task. This task mainly consists
in a large infinite loop, executed with a constant period, and that performs four
jobs (Fig. 10.3).
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(mechanism provided by the OS)

Figure 10.3: Flowchart of the task of the monitor module.

Job 1

The internal watchdog timer of the processor is reset. This watchdog is used to
recover from fault conditions, such as a hang, caused for example by a single-event
upset. The reset of this watchdog timer is performed first, so that the period of
execution of this job is not affected by the variations of execution time of the other
jobs in the monitor task.
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Job 2

The monitor task updates, in live memory, the status of the subsystems of the
satellite. Each subsystem that can be enabled or disabled by the OBC (thereby
excluding e.g. the BCN, which is active at all times) has information on its status
stored in the live memory of the OBC, in a data structure named currentStatus.
This status of each subsystem can be any value in the set {on, ready, disabled}.
Below follows the definition of each of these values.

e on means that the corresponding subsystem is currently powered on.

e ready means that the corresponding subsystem is currently not powered on,
but is considered in working order. The OBC may automatically turn it on
at any time.

e disabled means that the corresponding subsystem is temporarily or perma-
nently disabled. Only a telecommand can change this status to “ready” or

“OIl”.

The monitor task updates the current status of the controllable subsystems ac-
cording to the following information.

e requestedStatus This data structure is similar to currentStatus, and is
modified by the measurement module. A special value, named “noChange”,
is possible in addition to “on”, “ready”, and “disabled”; it is used to depict
no particular request in the change of status of a subsystem. Note that
no information contained in requestedStatus may change the status of a
subsystem currently set to disabled. This prevents an automatic reactivation

of a disabled and perhaps defective subsystem.

e imperativeRequestedStatus This table is similar to requestedStatus,
except that its handling by the monitor module allows to change the status of
a disabled subsystem. This permits a telecommand to reactivate a disabled
subsystem.

e FAULT xxx lines These electric signals come from the MAX890 current-
limiting switches that equip each subsystem (Chap. 7). If one of these signals
is set, the monitor module sets temporarily the status (in currentStatus)
of the corresponding subsystem to disabled, and attempts to reactivate it,
several iterations later. This power cycle is designed to recover from latchups.
However, the optimal reaction to such an event has not yet been determined.
Additional details are available in [Thirion09].

Job 3

Once the current status of the subsystems has been updated in memory, the actual
activation or deactivation of these subsystems is performed. This is realized by
setting or resetting the EN _xxx lines of the current-limiting switches.
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Job 4

In the case of the default processor, the heartbeat signal is sent to the other
processor. This is the last job to be done, since it is the one that has the potential
of creating the largest jitter (due to the use of the — shared — T?C module).

Note that, prior to the execution of any of the four aforementionned jobs, the
monitor module is responsible for adding to the scheduler the commands related
to the initial activation of the satellite. The exact sequence of commands has
not yet been decided, but here follows an example that indefinitely triggers the
antenna deployment mechanism until success, then turns on the COM subsystem:;
each planned command is defined by a pair {execution time ; command}.

e {5 min ; Deploy antenna}
e {6 min ; Check whether antenna is correctly deployed}

If the antenna is not correctly deployed, the following tasks are added:
{currentTime + 1 min ; Deploy antenna}
{currentTime + 2 min ; Check whether antenna is correctly deployed}

If the antenna is correctly deployed, a specific flag is set in the external
EEPROM, and the following task is added:

{currentTime + 5 min ; set the COM subsystem in requestedStatus to
Cﬁon”

10.2.3 Architecture of communication module

Due to the significant, remaining uncertainties in the hardware of the COM sub-
system of the satellite, no precise or fixed choices can be made for the architec-
ture of the related software. A tentative implementation is however discussed in
[Henrard09, Mahy09]. What is of more interest to us at this point is the interface
of the communication module with the other modules.

As inputs, the communication module needs the values of the parameters needed
to configure the radiocommunication channels. The communication module must
therefore provide relevant functions to set each of these parameters. This should
include, for example, a function to set the current frequency shift for the correction
of the Doppler effect. The communication module should also accept a way to feed
data on the downlink AX.25 channel, for sending telemetry down to earth. This
mechanism has not yet been devised; details are available in [Henrard09, Mahy09].

As outputs, the communication module provides the telecommands that have been
received on the AX.25 uplink and decoded. For each received telecommand, the
communication module calls a function of the sequencer, that places that particular
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telecommand in the list of pending commands, that will later be executed by the
sequencer.

10.2.4 Architecture of sequencer module

The sequencer module is implemented in one specific task (Fig. 10.4). The role of
this task is to execute, at the right time, the commands stored in a shared data
structure, named pendingCommands (see Appendix J). This data structure can
be filled via calls to a specific function, addCommand (), provided by the sequencer
module. This function takes care of filling the data structure properly. The mutual
exclusion of concurrent calls to addCommand () is assured by disabling the interrupts
during the manipulation of the pendingCommands shared data structure; this was
preferred over the use of a software solution such as a mutex, since it does not use
any memory ressources, and since the number of operations in the critical section
is very small. The synchronization between the adding of commands, via calls
to addCommand (), and the use of these commands by the sequencer, is peformed
using a semaphore. Note that an implementation of semaphores is provided with
FreeRTOS.

Commands in queue

Execution
time of 1st command
has expired

No P

Yes

v

Execute first command

|

Figure 10.4: Flowchart of the task of the sequencer module.

The data structure used to store the pending commands is chosen to be a fixed-size
array. This solution is preferable to a dynamic allocation scheme, and is strongly
recommended in a system like ours (JAST06]), since it makes the analysis of the
whole software easier, by avoiding a source of uncertainties (the possible failure
of memory allocation). The handling in the case of overflow of pendingCommands
has not been decided yet.
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The complete list of actions that can be executed by the sequencer has not yet
been established. This list should include as many ways as possible to act on the
satellite, since these commands will be the only way for the operator on the ground
to control it. We also advise to include generic commands in this list, e.g. to read
or write any address in RAM or EEPROM. Such commands should accomodate
as many unforeseen situations as possible. Note that some particular commands
may need a parameter to specify by which processor (OBC1 or OBC2) they are
to be executed. An example of such a processor-specific command would force the
default processor (OBC2) to stay idle, so that the backup processor (OBC1) could
take over the control of operations.

10.2.5 Architecture of measurement module
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Figure 10.5: Flowchart of the task of the measurement module.

The role of the measurement module is to handle both the housekeeping parameters
and the science parameters. Even though all these measurements have to be
sampled at different frequencies (Fig. 10.5), this module can be implemented as a
single task.

The housekeeping parameters, once sampled, are analyzed by a specific function,
that can modify the requestedStatus variable (Sect. 10.2.2). For example, the
voltage of the batteries, once sampled, is compared to a predefined threshold,
and the result of this comparison is used to turn EPS2 on or off, by setting its
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value in requestedStatus to “on” or “ready”, respectively. Note that the analysis
function, which consists only in a comparison here, may be more complex; it could,
for example, include an hysteresis in the comparison with a threshold.

The science parameters, once sampled, are stored in the external EEPROM. We
use a fixed scheme for the placement in this memory (for each parameter, a fixed
range of addresses is used cyclically). Details are available in [Evrard09).

10.2.6 Architecture of log module

The implementation of the log module is similar to the one of the sequencer
module. Once specific task is used; it takes data from a shared data structure,
pendingEvents, and it writes it in the external EEPROM. The same synchroniza-
tion mechanisms — disabing the interrupts for mutual exclusion and a semaphore
for synchronization — are used.

Load the last address stored in EPROM
and put it in « currentAddress »

<
) 4
Qn queue%No»
Yes
|
v

Store first event in external EEPROM, at
« currentAddress », then increment it

\
v

Store, in the external EEPROM,
« currentAddress »

Figure 10.6: Flowchart of the task of the log module.

A static memory placement scheme is also used here. A predetermined range of
addresses in the external EEPROM is used cyclically to store the most recent
events. Note that the log module also store in the external EEPROM the last
position used in this range. This is designed to keep a coherent log even when the
backup processor (OBC1) takes over the default processor (OBC2). The events
written in the log also mention by which processor they were generated.
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10.2.7 Architecture of clock module

As a reminder, the only goal of the clock module is to maintain a time reference
with a precision of one second, and make it available for any other module that
needs it. This naturally translates into a global counter variable, which has to be
incremented every second.

The clock module is chosen to be implemented, not with a specific task, but
directly in the interrupt service routine (ISR) of a timer of the MSP430. Timer B
is used, and its clock uses the external 32.768 KHz crystal. This gives, with the
appropriate configuration of this timer, a 1 Hz periodic execution of the ISR. The
code executed in this ISR only consists in incrementing a counter, and thus only
takes very few cycles (Fig. 10.7).

The counter variable, named currentTime, is implemented on 32 bits. This gives
a counting capability of 232 seconds, or about 136 years. Since the instructions of
the MSP430 can manipulate only 16 bits at a time, operations on currentTime
may not be atomic. Therefore, when manipulating this variable, we chose to
temporarily disable the interrupts, to ensure atomicity of the operations.

Note that the currentTime variable can not only be read, be also written. This
allows a telecommand to initialize or to resynchronize the on-board clock.

Timer ISR

Increment currentTime ‘

Figure 10.7: Flowchart of the clock module.

Instead of using a hardware timer, the clock module could be implemented using
an specific task of the OS. However, this would require more ressources (as does
adding any additional task), both in memory and in the processing time of the
scheduler. This is thus not a desirable solution.

The clock module could also be quite simply integrated in an existing, periodic,
task. However, a very careful — and complicated — analysis of the scheduling of
all the tasks would be needed, to show that the chosen task would be schedulable
at all times, even in cases of software faults (due to programming errors, hardware
failure, code corruption, etc.). If this is not proven, the clock could experience
jitter or drift, which is to be avoided, since the clock is the reference for many
critical operations aboard the satellite.

The use of a timer and its interrupt routine for the clock module was therefore
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deemed the best solution given the information that was available regarding the
mission and the subsystems at the time of this writing. Let us however note
that this regular interrupt will have to be taken into account when designing and
analyzing the execution of the communication module (given its strong real-time
constraints).

10.2.8 Architecture of device drivers

The device drivers are librairies of functions that allow one to interact, at a high
level, with specific hardware devices. For example, a function is provided to reset
the internal watchdog timer of the MSP430, and another one is provided to per-
form a conversion on an external ADC and retrieve the conversion result. Even
though the implementation of these functions is relatively straightforward, the de-
vice drivers are the part of the software that has needed the most development
time. Indeed, interacting with each device requires a good understanding of its
functionning, with a thorough analysis of its datasheet.

There are few details of this part of the software that can be analyzed at a high
level. However, all the low-level details are explained directly in the source code
(Appendix K).

Note that the I?C drivers make full use of the corresponding hardware circuits in-
tegrated into the MSP430. A software buffer is used, and the interrupts generated
by the I2C module are used to move data from this software buffer to the hard-
ware module in transmit mode, and vice versa in receive mode. A semaphore is
used to report to the calling function when the transfer is complete. Appropriate
verifications and timeouts are included to make the software robust to hardware
faults (e.g. a device that does not respond).

Note that the UART drivers make also full use of the corresponding hardware
circuits integrated into the MSP430. Similarly, a software buffer is used, and
the interrupts generated by the UART module allow a transfer to be executed
autonomously once the appropriate function has been called.
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Chapter 11

Software: Practical implementation

This chapter describes the software that was implemented. Due to the many
uncertainties remaining, at the time of this writing, in several aspects of the mission
and in the design of several subsystems, the implemented software is necessarily a
first-cut of what the complete software will ultimately be. However, this software
implements all the functionnalities and modules discussed in Chap. 10. The
implemented software was designed to constitue a solid basis, from which the final
CubeSat software will ultimately emerge.

11.1 Details of software implementation

As discussed in the previous chapter, the communication module could not be
developed at this point. Since this module has a central role in the overall software
system, one had to simulate it in some way, in order to provide a functionnal
and testable implementation of the system. We chose to use the existing USB
interface of the FM430 (Chap. 7) to simulate the input/output capabilities of
the COM subsystem. Here is some information, module by module, about the
functionnalities of the implemented software.

e Initialization

The dual-processor redundancy is implemented, as explained in Chap. 10,
using I2C messages.

e Monitor module

All the functionnalities of the monitor modules are implemented. However,
only one subsystem, EPS2, is currently handled. This is sufficient to test
all the functionnalities, and the effort needed to handle more subsystems
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is very small. In the case of a FAULT EPS2 signal, the subsystem is re-
set via a power cycling. Note that, for simulation and test purposes, the
FAULT EPS2 signal can be set by a “telecommand” sent to the communi-
cation module (through the USB interface). Again, for simulation and test
purposes, the EN EPS2 is connected, on the test board, to a LED, that
permits to directly visualize the activation and deactivation of the EPS2
by the OBC. The value of the EPS2 in currentStatus is, by default, set to
“disabled”.

Note that the monitor task, in this first implementation, also makes a LED
blink on the test board. This LED is different in the case of OBC1 or OBC2,
which allows one to clearly visualize which OBC is active at any time.

Communication module

We use the USB interface, which itself uses te UART1 of the MSP430, to
receive telecommands, and to send telemetry and status messages. The code
for handling the USB interface is integrated into the communication module,
so that the transition from using the USB interface to using the actual COM
subsystem will be fairly transparent to the other software modules.

A “telecommand” is sent to the OBC by transmitting 4 bytes on the USB
interface. The first byte is a start byte, of constant value 0x21 (“I” in ASCII),
that indicates to the OBC that the transmission of a telecommand is follow-
ing. The two following bytes correspond to the planned execution time of
the telecommand (in the same format and with the same reference as the
on-board clock); if the telecommand needs immediate execution, this value
should be set to zero. The last byte, finally, is the identifier of the telecom-
mand itself. Note that, in the final software, some particular telecommands
should probably accept parameters, of fixed or variable size; this feature
was however not implemented in this first version of the software, to keep it
simple and thus easily modifiable.

Sequencer module

The sequencer is implemented as discussed in Chap. 10. The only difference
is in the number of commands currently supported. Only commands needed
for basic test and demonstration purposes are implemented. Note however
that adding a new command is generally a matter of only a few lines of code.
The command for deploying the antenna is currently simulated by sending
a “Deploy antenna” message on the USB interface.

Measurement module

The measurement module is implemented as discussed in Chap. 10. How-
ever, only one housekeeping parameter and one science parameter are cur-
rently handled. They are measured respectively on an AD7997 ADC and on
an LM75 temperature sensor, both included on the test board (Chap. 8).
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The parameter measured by the ADC is a simulation of the battery voltage,
and it is used to turn the EPS2 subsystem on and off, by comparing it to a
fixed threshold.

The measurements of both parameters are stored in the external EEPROM.
A single telecommand (0x6D, or “m” in ASCII) allows one to retrieve the
entire set of measurements stored in the external EEPROM. Since no precise
requirements for the storage and retrieval of measurements were yet estab-
lished, this part of the implemented software was kept very simple. For
example, there is currently no time information stored with the measure-
ment. This simplicity in the implementation was deliberate, again, to keep
the software simple and easily modifiable.

e Log module

The clock module is implemented as discussed in Chap. 10. Each event in
the log is composed of a 8-bit code, denoting the nature of the event, and of
8 other bits of information, the meaning of which depends on the nature of
the event. For exemple, the event number 3 means a change in the current
status of EPS2, and the associated information is the new value of its status.

A single telecommand (0x6C, or “I” in ASCII) allows one to retrieve the
entire set of events stored in the log.

e Clock module

The clock module is implemented as discussed in Chap. 10.

e Measurement of processor utilization

A particularly useful feature for the development of the software was in-
cluded in this first version. It allows one to monitor the current utilization
of the processor of the active OBC (OBC1 or OBC2). It is implemented
with a counter variable, incremented in the idle hook!, and regularly reset,
by the sequencer task (although this could have been done in any other pe-
riodic task). Each time the counter is reset, its value reflects the amount of
available, remaining processing time, between the two last resets. A special
version of the software, with all tasks disabled (except the mechanism to re-
set the counter and show its value) was run first, and the average value of the
counter was noted. Then, when running the actual software, the value of the
counter can be compared with this previously noted value, and a percentage
of “processor utilization” can be deduced.

Practically, the value of the counter is periodically sent in a particular mes-
sage, on the USB interface; the periodic sending of this message can be
enabled and disabled with a telecommand (0x75, or “u” in ASCII).

As a example, the current figure of utilization, in idle conditions (i.e. when

!The idle hook is the part of the code executed by the OS when no other task is active.
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no telecommand is received and when no event has to be written in the log),
is around 0.1 %.

Note that, in addition to the information above, the source code of the software
(Appendix K) is extensively commented; these comments explain functionning
details (such as, for example, the list of possible telecommands, or the code used
to represent each type of event in the log), as well as technical implementation
details. The interface of each function of each module is also formally specified, in
order to allow one to easily reuse and rework on the existing code.

11.2 Practical details of software realization

The software is programmed in C language. We use the Rowley CrossWorks' com-
piler, together with the Rowley CrossStudio integrated development environment.
The processors of OBC1 and OBC2 are each programmed using their own JTAG
interface (Chap. 7) and the appropriate tool from Texas Instruments, the MSP-
FET430UIF (Fig. 11.1). This tool connects, on one side, to the JTAG interface of
one of our boards, and on the other side to the USB port of a computer. The Row-
ley CrossWorks compiler allows one to interact directly with this tool, to load a
program into the processor, but also to perform debugging operations such as step-
by-step execution. For interacting with our boards through their USB interface,
we use Hilgraeve Hyperterminal? and Eltima Advanced Serial Port Terminal?.

Appendix K gives the list of the files that contain the source code, and the number
of lines in each of them.

Figure 11.1: Texas Instruments’ JTAG interface used to program and debug OBC1
and OBC2.

!See http://www.rowley.co.uk/msp430/.
2See http://www.hilgraeve.com.
3See http://www.virtualserialport.com/products/serial-port-terminal/.
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Figure 11.2: Test-bed used for integration tests.

11.3 Functional tests of software

The implemented modules were tested in various ways, and showed to behave
according to their specifications. The first tests were unit tests, where each module
is indivually tested. Such tests allow one to manually modify the inputs to the
module, and monitor its individual behavior. The subsequent tests were integration
tests. They allow one to test the interaction between the modules, and the global
behavior of the system. These tests were particularly important in our case, due
to the strong interdependence of the different modules. For example, turning on
a subsystem at a preprogrammed time involves the communication module, to
receive that command, the sequencer module, to execute the command at the
correct time, the clock module, to provide the current time to the sequencer, and
finally the monitor module, to actually change the status of the subsystem.

The description and the results of an extensive test scenario can be found in
Appendix L. It shows the use of all the main hardware and software features of
the OBC system. The test-bed used for integration tests like this one, comprises
the OBC1 (either the FM430, or its development board, which are electrically
equivalent), the OBC2 (one of the engineering models provided by Deltatec), and
the test board (Chap. 8), all plugged onto each other (Fig. 11.2). The USB port
of the OBC1 is connected to a control computer, where a terminal software is used
to send commands to and to receive messages from the OBC boards.
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Figure 11.3: Engineering model of the OBC2, provided by Deltatec, plugged onto
the OBC1 (Pumkin’s FM430).
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Chapter 12

Conclusions and future work

12.1 Conclusions

This thesis discussed the development of the hardware and software aspects of the
on-board computer (OBC) of the OUFTI-1 CubeSat system.

This work started from scratch, with the identification of the exact requirements
of the system. We performed an analysis of the mission and its operations. We
centralized and formalized the requirements, in terms of electrical interfaces, of all
the other subsystems, and we devised a suitable global electrical architecture for
the satellite. We were then able to identify the exact requirements of the OBC,
in terms of processing power, electrical interface, storage memory, etc. A robust
solution was conceived, which consists in one off-the-shelf microcontroller board
(OBC1), and in one custom board (OBC2). The complete design of this custom
board was carried out, and a prototype was hand-built and tested successfully. A
professional set of specifications for this custom board was then prepared, in order
to get the subsequent prototypes manufactured at a specialized local electronics
company, Deltatec. Their version of the board was successfully tested as well.

The development of the on-board software of the satellite was performed, starting
with the identification of its precise requirements. We proposed an original, mod-
ular, and robust software architecture, consisting in six generic modules. Each of
these modules was then designed and described in detail. Last but not least, a com-
prehensive and functionnal implementation of the software modules was realized,
as well as an implementation of software drivers and librairies for the hardware
devices to be handled by the OBC of OUFTI-1. The mission-specific details of the
software could not be implemented, due to many unknowns in several aspects of the
project, still at the time of this writing. However, the whole software was designed
to be modular, so that many possible changes can be very easily integrated.
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12. CONCLUSIONS AND FUTURE WORK

12.2 Ideas for future work

On the hardware side, the current prototypes are deemed complete and function-
nal. If no major change in the global project arises, the only task left is to supervise
the production of the flight model(s) of the OBC2.

On the software side, most of the development work left concerns mission-specific
details. In particular, one will have to formalize a precise and comprehensive list of
telecommands, as well as a format for the telemetry to be sent by the satellite. A
formal sequence of operations, and/or a definition of satellite operating modes, will
also have to be established. These definitions should state when one subsystem or
another has to be turned on and off, or e.g. what to do in the event of a malfunction
of a given subsystem. These operations would then have to be integrated in the
software.

Similarly, the mechanism used to switch between the default and backup processors
may also have to be improved. Some cooperation effort is needed, with teams
working on the other electrical subsystems, in particular on the EPS, to determine
all the possible failure scenarios, and the best corresponding reactions to these
scenarios. In the case of the redundancy of the two processors, it is yet to determine
whether it is advisable to be able to switch back to the default processor if it proved
to be faulty at some time.

Some other details, that have not been precisely defined at the time of this writing,
will have to be integrated in the current software architecture. In particular, a
high-frequency measurement capability is likely to be needed, for monitoring the
functionning of the EPS2 (see [Ledent09]).

Additional features could then be included in the software. Among the most useful
ones, we suggest adding mechanisms to detect and correct the effect of single-event
upsets in RAM and ROM, as well as adding an on-orbit reprogramming capability.

Finally, a task of major importance, in criticality and in the ressources needed, is
the testing phase. Its purpose is to assess the correct behavior of the satellite in
nominal and off-nominal situations, and to discover as many bugs as possible. A
significant time-frame should be planned to complete this critical task successfully.
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Appendix A

List of parameters to be measured
aboard OUFTI-1

The following table gives the list of housekeeping and science parameters that were
chosen to be measured aboard OUFTI-1 during its normal operations. This table
is an excerpt from [Evrard09].

Measurement point Type Name
Mechanical structure
Cube face 1 Temperature T F1
Cube face 2 Temperature T F2
Cube face 3 Temperature T F3
Cube face 4 Temperature T F4
Cube face 5 Temperature T F5
Cube face 6 Temperature T F6
Telecommunication system (COM)
3.3V current Current I COM3.3
7.2V current Current I COMT7.2

Amplifier temperature | Temperature | T COMT7.2
SWR SWR SWR_COM
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A. LIST OF PARAMETERS TO BE MEASURED ABOARD OUFTI-1

Measurement point Type Name

Radio beacon (BCN)

Beacon 3.3V current Current I BCN3.3
Beacon 7.2V current Current I BCNT7.2
Beacon amplifier temperature | Temperature T BCNT7.2

Electrical power supply (EPS)

Solar cell 1 current Current [ SC1
Solar cell 2 current Current [ SC2
Solar cell 3 current Current I SC3
Solar cell 4 current Current I SC4
Solar cell 5 current Current I SCh
Solar cell total current Current I SCT
Batteries temperature Temperature T BAT
Dissipator temperature Temperature T LM94022
Batteries voltage Voltage V_BAT
7V converter temperature Temperature T 7.0
3.3V bus Voltage V_ 3.3
5.0V bus Voltage V_5.0
7.2V bus Voltage V_ 7.2
Experimental electrical power supply (EPS2)
3.3V converter output Voltage V_EPS20UT
Converter current Current I EPS20UT
Digital circuit voltage Voltage V_EPS2DIG
Digital circuit current Current I EPS2DIG

Digital circuit temperature Temperature T EPS2DIG

Converter temperature Temperature | T EPS2CONV
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Appendix B

Investigation of the use of two
stacked FM430 boards

The use of two FM430 board was examined as a means of providing redun-
dancy. Using two identical boards implies that the CubeSat bus connectors of
the two boards would be directlty connected together, and some careful analysis
was needed to determine whether this was compatible with the hardware.

By analyzing the use of each pin of the CubeSat bus (described in the FM430
datasheet), I determined the consequences of stacking two FM430 boards.

e The six 8-bit I/O ports of the MSP430s of both boards would be connected
together (since they are all available on the CubeSat bus). This implies that
the pins configured as outputs on one board have to be configured as inputs
or as high impedance pins on the other board.

e The VREF-+ pins of the two MSP430s would be connected together. These
pins provide the ADC reference voltage as output. Since this is an output,
connecting them together should be avoided. This voltage is not likely to
be useful in our application, so the printed circuit board track between one
of the MSP430s and that pin on its bus connector could be cut to solve the
problem.

e The USB communication lines of the two boards would be connected to-
gether. They would be connected at the level between the MSP430 and the
buffer. The pins of the MSP430 used for USB transmission (Tx) do not pose
any more problems than any other output (see the first point). The pins
of the MSP430 used for USB reception (Rx) would be connected together
between the buffer and the MSP430. This may be problematic if the two
buffers output different values. Each buffer has an output enable (OE) input,
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B. INVESTIGATION OF THE USE OF TWO STACKED FM430 BOARDS

which can be used to set its outputs to high impedance. This OE line is avail-
able on the CubeSat bus, and is thus connected between the two boards. A
solution is to cut the corresponding track on one of the boards, so that each
board may enable its own buffer independently.

e All the pins of the SD card sockets of both boards would be connected
together. This implies that it would be impossible to write to only one
of the two cards. This may also pose a problem in the case when a read,
occurring on both cards at the same time, returns something different for
the two cards. This problem may easily be avoided by using only a single
SD card, thus located on only one of the two boards.

e The FAULT signals of both boards would be connected together. These signals
come from current-limiting MAX890 integrated circuits (IC). The output of
these ICs is an active-low, open-drain signal, so this would not be a prob-
lem. However, it would be impossible to know whether a FAULT signal is
originating from one board or the other.

e The SENSE and Vcc signals of both boards would be respectively connected
together. These are sensing points of the MSP430 supply voltage, that are
respectively connected after the current-limiting switch and after the LDO.
This should be avoided since we would loose the protection by connecting the
SENSE pins, and we may lose some precision in the supply voltage regulation
by connecting the Vcc pins. We would then recommend to cut the tracks
going to these pins on the bus.

e All other pins on the bus are either not connected, or inputs, so they do not
pose any problem.

After this analysis, it appears that directly stacking two FM430 boards is not
impossible, but it requires to isolate several signals between the two boards. Let
us also mention that physically cutting tracks on these boards is not recommended
and may not be feasible at all. Indeed, these boards are multi-layered, and the
problematic signals may very well use burried tracks. A solution around this
problem, that uses one unmodified FM430 and one custom board, is presented in
Chap. 6.
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Appendix C

Overall electrical architecture and
data flow paths of OUFTI-1
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Appendix D

Allocation of the CubeSat bus
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Appendix E

OBC2 electrical schematics
originally proposed by author
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Appendix F

OBC2 electrical schematics
re-encoded by Deltatec
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Appendix G

OBC2 engineering model PCB
originally proposed by author
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Appendix H

OBC2 engineering model PCB
designed by Deltatec
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Appendix 1

Handling of software functions by
the application modules

This appendix is an addendum to Chap. 9. It explains, at a high level, how each
functionnality, listed in Sect. 9.1, is handled by the various software modules,
listed in Sect. 9.2.2. As a reminder, they consist in the monitor module, the
communication module, the sequencer module, the measurement module, the log
module, and the clock module.

1. Perform the initial satellite operations (antenna deployment, first activation of
the other subsystems) according to a predefined sequence.

These operations are executed by the sequencer module. The exact sequence
and timing of the operations is not yet determined, but they are to be placed
in the initial list of tasks of the sequencer, which will execute them with the
programmed timing.

2. Perform AX.25 and D-STAR encoding and decoding.

These complex operations are naturally handled by the communication module.
The development of this part of the software is the responsibility of the team
working on the COM subsystem.

3. Handle telecommands received on the uplink channel.

All telecommands are first decoded by the communication module, then placed,
with their planned execution time, in the task list of the sequencer. All the
telecommands are eventually executed by the sequencer.

4. Perform measurements of housekeeping and science parameters aboard the satel-
lite.
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10.

11.

The measurements are naturally performed by the measurement module.

Store relevant measurements until they can be sent to the ground station.

The measurements, once sampled by the measurement module, are written to
the external EEPROM.

Respond to telemetry requests by sending current or stored measurements.

A “telemetry request” command is first decoded by the communication module,
then executed by the sequencer (like any other telecommand), which loads the
requested data from the memory and puts it in the downlink buffer of the
communication module.

Provide a time reference.

The current time is maintained by the clock module. It provides an interface
to get the current time from any other module.

Perform power supply management, by enabling and disabling other subsystems
in predefined conditions (e.g. a low battery voltage).

These conditions are measured by the measurement module, which also imme-
diately applies the appropriate tests on them. If these tests imply changes in
the activation of subsystems, theses changes are requested, and the monitor
module is then responsible for making these changes effective. Note that the
monitor may not apply the changes if it was given information that has a higher
priority than the changes requested by the measurement module (e.g. a status
change request from a telecommand, that has a higher priority than automatic
actions).

Perform power cycling in case of latchup in a subsystem (detected with the
FAULT signals).

The status of the FAULT lines is sensed directly by the monitor module, which
then takes care to power cycle or disable problematic subsystems.

Manage the experimental electrical power supply, by enabling and disabling il
in predefined conditions.

This functionnality is a particular case of point 8.

Manage the D-STAR payload, by configuring it (e.g. for Doppler compensation)
according to data received by specific telecommands.

The communication module provides an interface to configure it from any other
module. Therefore, as an example, a planned sequence of frequency corrections
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12.

13.

can be uploaded via several telecommands, with appropriate execution times.
They are executed by the sequencer, which then reconfigures the communica-
tion module as requested.

Keep a log of meaningful events happening aboard the satellite, that can then
be retrieved with one or more specific telecommands.

The log is naturally maintained by the log module. It also provides an interface
to retrieve its contents. The mechanism of the retrieval is thus similar to the
one used in point 6.

Monitor, for the backup processor (OBC1), monitor the activity of the default
processor (OBC2) and detect when it stops functionning.

This system is implemented using existing communication lines between the two
processors: the I?C bus. The default processor is the bus master, and regularly
sends a predefined 12C message to the backup processor, then configured as a
slave. If no message is received by the backup processor during a prescribed
length of time, it concludes that the default processor has become ineffective,
it configures itself as the bus master, and then starts to handle the normal
operations.
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Appendix J

Static architecture of software
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Appendix K

Source code of software

The source code of the developed software can be found at the following address:
http://www.student.montefiore.ulg.ac.be/~teney/thesis/

Here is the list of the files that contain the source code, and the number of lines
in each of them.

/OUFTI1.hzp N/A
(CrossStudio project file)

/src/boolean.h 11 lines
/src/FreeRT0SConfig.h 48 lines
/src/main.c 118 lines
/src/main.h 26 lines
/src/drivers/24xx1025.¢c 162 lines
/src/drivers/24xx1025.h 15 lines
/src/drivers/ad7997.c 65 lines
/src/drivers/ad7997.h 17 lines
/src/drivers/i2c.c 209 lines
/src/drivers/i2c.h 30 lines
/src/drivers/1m75.c 64 lines
/src/drivers/1m75.h 8 lines
/src/drivers/ouftiHardware.c 101 lines
/src/drivers/ouftiHardware.h 62 lines
/src/drivers/usartl.c 234 lines
/src/drivers/usartl.h 36 lines
/src/drivers/usb.c 77 lines
/src/drivers/usb.h 18 lines
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K. SOURCE CODE OF SOFTWARE

/src/modules/clock.c 39 lines
/src/modules/clock.h 7 lines
/src/modules/communication.c 40 lines
/src/modules/communication.h 8 lines
/src/modules/debug.c 84 lines
/src/modules/debug.h 17 lines
/src/modules/log.c 199 lines
/src/modules/log.h 46 lines
/src/modules/measurement.c 106 lines
/src/modules/measurement .h 35 lines
/src/modules/monitor.c 120 lines
/src/modules/monitor.h 30 lines
/src/modules/sequencer.c 204 lines
/src/modules/sequencer.h 29 lines
Total 1913 1lines
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Appendix L

Test scenario and results

Here is the description and the results of an extensive test scenario, that shows
the main features of the implemented software. The hardware test-bed used for
this test is the OBC1 (either the FM430, or its development board, which are
electrically equivalent), the OBC2 (one of the engineering models provided by
Deltatec), and the custom test board (Chap. 8), all plugged onto each other.
The USB port of the OBC1 is connected to a control computer, where a terminal
software is used to send commands to and receive messages from the OBC boards.

Time Message received (Rx) Comments and observations
or transmitted (Tx)

0 OBC1 and 0BC2 are turned on; the LED
of 0OBC2 blinks and shows that it is
active

300 Rx: "Deploy antenna" After 5 minutes, the antenna is

automatically deployed (simulated by
this message)

463 Tx: 0x21 0x0000 0x7C Command to simulate failure of 0OBC2

463 0BC2 stops any activity, its LED
stops blinking

464 0BC1 starts functionning, its LED is
now blinking

502  Tx: 0x21 0x0000 O0x21 We set the value of the EPS2 in
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L. TEST SCENARIO AND RESULTS

514

514

531

650

652

649

660

Tx: 0x21 0x028A 0x66

Tx: 0x21 0x0000 0x6C

Rx:

0;1;1

300;2;0

464;1;0

currentStatus to ready (it was set
to disabled by default; the EPS2 can
now be activated automatically by
the 0BC)

We manually set the input of the ADC
(by turning the potentiometer on the
test board) over the predefined
threshold (defined of value 512) for
activating the EPS2

The LED simulating the EPS2 is
turned on

We simulate a latchup on EPS2 (the
FAULT_EPS2 signal is set by software
for the simulation) at time 650
(0x284)

The LED of the EPS2 is turned off

The LED of the EPS2 is turmed on
(this power cycle is designed to
recover from the latchup)

We ask to retrieve the log

The format of each record is:
‘‘time;eventType;eventParameters’’;
here follows a textual explanation
of each received record

Time: O seconds
Event: "OBC started"
Parameter: "OBC = 0OBC2"

Time: 300 seconds
Event: "Antenna deployed"
Parameter: none

Time: 464 seconds

Event: "OBC started"

Parameter: "0BC = 0OBC1"

Note that OBC1l does not overwrite
records previously stored by 0BC2
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698

698

502;3;12

514;3;3

531;4;0

650;4;47

652;1;0

~ O O O
. oS O O
~ O O O

Tx: 0x21 0x0000 0x6D

Rx:

314;23
314,23
314,23
...)

314;24
314;24
429,24

680;24

680;24

Time: 300 seconds
Event: "EPS2 status changed"
Parameter: "current status =

Time: 514 seconds
Event: "EPS2 status changed"
Parameter: "current status =

Time: 531 seconds
Event: "EPS2 fault detected"
Parameter: none

Time: 6b0 seconds
Event: "EPS2 status changed"
Parameter: 'current status =
cycle in progress"

Time: 652 seconds
Event: "EPS2 status changed"
Parameter: '"new status = on"

Empty records

power

We ask to retrieve all stored

measurements

The format of each record is:
¢ ‘V_BATTERY;T_BATTERY’’

Identical records

Approaching time 514, we start
turning the potmeter that simulates

the voltage of the battery

At time 514, the value of V_BATTERY

crosses the threshold of 512
activating EPS2

for
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L. TEST SCENARIO AND RESULTS

Identical records

Empty records
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