
Test of
Onboard Computer

For DTUSat

Ørsted • DTU

Technical University of Denmark

Malte Breiting, c973568
Jonas Sølvhøj, c973442

Table of Contents

Table of Contents...2
Introduction..3
The work done during the three weeks ...3
Radiation in Space ...3
The µProcessor ..4

Test Software ...4
Functionality ..4

The Results ..5
The Flash Memory...6

Test Software ...6
The Results ..6

Conclusion...7
Appendix ...8

blink...8
ram-check ..8
watchdog..10
usart ...11
flash-read ...12
flash-write ..12
flash-check ...15
ram-check ..18

Introduction
This report covers the work done by the Onboard Computer group during the last 3
weeks of January 2002. The main objective of this work was to examine how the
semiconductors selected for the Onboard Computer react when they are irradiated.
This report will describe in greater detail what happened to the parts, and the software
used during tests

The work done during the three weeks
PCBs for the tests had to be produced. Some small errors of our current schematic
were eliminated and a new PCB was routed by hand in order to make it smaller than
our first test board. We then produced the PCB’s and did the soldering of all
components (and vias) with exception of the processor and the flash. The routing was
quite time consuming (about a day), and equal amount of time was used during the
manufacturing and soldering of the boards.
Two days was used to rewrite some old test software, as well as to write some new.
Most part of the time was used to solder the irradiated processors and the flashs to the
boards – and to remove them again. Actually the soldering didn’t take much time, but
the troubleshooting (e.g. finding bad soldering, short circuits) did. We had to be very
careful in this process, at we did not know if the reason the processor didn’t work was
bad soldering – or malfunction as a function of radiation. Most time of the three
weeks were used in this step.

In addition to this we also did the following:

• Interface meeting
We had a meeting with the rest of the hardware groups of the satellite project with
the purpose of specifying the electrical interfaces between all hardware. This
report will not cover this, as it has already been documented, and is available at
the DTUsat web site in the System Engineering group. The preparation of the
meeting and the meeting itself took a day.

• Preliminary Design Review
We met with all groups of the project in order to find out if the current design
were able to cover all aspects of the satellite we are building, if all subsystems can
be built together to form one functional satellite, as well as to discover if critical
parts of the design were missing. The time used for preparation and the meeting
was about 1 ½ day.

Radiation in Space
To ensure that the computer will work in space it is important to test the components
durability when they are exposed to long-term radiation. This is an important ting to
know, as the radiation in space may shorten the lifetime of the semiconductors or
make them malfunction. In order to examine what happens with the semiconductors, a
number of both the processors (AT91M40800) and the flashs (AM29LV017D) were
sent to Risø, where they were irradiated with doses of 1, 2, 5, and 10 kRad. Back on
our desk they were then soldered onto a PCB, and tests concerning functionality (e.g.

if we were able to write to, and read from the flash), and measurements on power
consumption were carried out.1 Besides the need not to exceed the limits of the power
budget it is also important to know the power dissipation in order to set a suitable
threshold for the latch-up protection (a latch-up is detected when the component
draws a relatively large current compared to normal operation).

The µµProcessor
Each of the processors that had been exposed to radiation was mounted on one of our
3 PCB’s after which the functionality of the processors was verified. Then power
dissipation was measured. The measurements were done in various situations to test
the power consumption of all the built-in processors functions.

Test Software
We needed two types of software for the tests: One for testing functionality, and one
for the current measurements.

Functionality
The table below sums up, what the different programs did and for which functionality
they were used for to test. The source code for the programs is listed in the appendix.

Program Action Shows whether…
blink
internal

Runs in internal RAM
Writes different values to the
I/O port of the processor

the processor is able to run programs
from internal memory and whether
the I/O-ports works

blink
external

Runs in external RAM
Writes different values to the
I/O port of the processor

the processor is able to run a program
from external RAM, ie. read from
and write to external RAM

ram-check Runs in internal RAM
Erases the external RAM and
tries to write the values 0xAA,
0x55, and 0xFF to all
addresses of the external RAM

the entire external RAM is accessible,
i.e. the address- and data-busses is
working

watchdog Sets up the watchdog-timer,
and waits longer and longer
time before it resets the
watchdog

the watchdog timer is working and
whether the processor is able to boot
from external flash

usart Sets up the usart and waits
until a character is received.
Then returns the character+1

the usart is working

In addition a program named “nop” was used for the current measurements. The
program sets up all I/O ports as high outputs, and then goes into an infinite loop.

1 The topic is described further in our paper “Onboard Computer For Pico Satellite” located at
http://www.dtusat.dtu.dk/files/download/244/pmp.pdf

Using our JTAG interface, we were able to disable different features of the processor.
In the measurements below, the program “nop” was executed with different features
disabled.

The Results
All the processors passed the functionality tests. The results of the power
consumption tests are shown in the table below:

Board Yellow Red Green Red Green Red Green
Radiation (kRad) 0 0 1 2 2 5 10

Comment
Fast
radiated

Slow
radiated

Fast
radiated

Fast
radiated

Fast
radiated

Currents in mA
blink - internal 23,8 24,5 26,3 26,5 32,9 32,5 34,6
blink - eksternal 18,8 18,9 20,8 17,6 17,9 19,3 20,2
Infinit internal loop
"- All 20,8 19,2 19,7 22,3 31,5 30,4 29,1
"- PIO 16,7 15,5 15,3 18,6 28,3 20,1 25,5
"- TC0 16,7 15,5 15,2 18,5 27,9 20,6 25,6
"- TC1 16,7 15,5 15,2 18,5 28,0 20,6 25,5
"- TC2 16,8 15,5 15,2 18,5 28,2 20,6 25,5
"- USART0 17,8 16,4 16,1 19,4 29,3 20,5 26,4
"- USART1 17,9 16,5 16,2 19,5 29,8 20,6 26,4
"- None 16,5 15,1 14,7 18 28,5 19 25

Explanation of the table rows:
• Board – There are 3 different test PCBs
• Radiation – The amount of radiation that the component has been exposed to
• Comment – Comments about the radiation given to the component
• “blink - internal” – A measurement of the current when running the program

“blink” in the internal RAM
• “blink - external” – A measurement of the current when running the program

“blink” in the external RAM
• “infinite internal loop” – A number of measurement of the current when

running a simple program that performs a loop operation in the internal RAM
and with only some specific clocks of the processors special functions’ clock
enabled

o All – The infinite internal loop with all the special functions’ clocks
enabled

o PIO – The infinite internal loop with only the PIO clock enabled
o TC0 – The infinite internal loop with only the TC0 clock enabled
o TC1 – The infinite internal loop with only the TC1 clock enabled
o TC2 – The infinite internal loop with only the TC2 clock enabled
o USART0 – The infinite internal loop with only the USART0 clock

enabled
o USART1 – The infinite internal loop with only the PIO clock enabled
o None - The infinite internal loop with none of the special functions’

clocks enabled

The measurements were performed with a standard multimeter and the precision is
therefore limited. However the precision is good enough to determine the latch-up
current threshold.
The results in this test vary much and they are difficult to elaborate much from. The
only sure thing to note is that the radiation defiantly has a negative effect on the
power consumption. There are several possible reasons that can have caused these
variances in the measurements.

• Bad soldering
• Too much heat when soldering can damage the component
• The test was done on 3 different PCBs

As all the processors worked after the radiation, and the current consumption of the
one exposed to 10 kRad did not even double, we believe that the processor will be
able to operate in space with success.

The Flash Memory
Similar to the CPU it is essential to know how the flash component will react to long-
term radiation exposure. The flash components were radiated with 1, 2 and 5 kRad
and one was left irradiated. The measurements on the flash were done in three
scenarios “read”, ”write” and “standby” mode.

Test Software
To test functionality of the flash, a program that first erases the entire flash (i.e.
setting all bits to 1), and then writes zeroes to all addresses was created. The program
returns an error by blinking with the LEDs on the test board, if it is not able to write
zeros to all addresses.

To do tests concerning current, a program that continuously reads from the flash was
created. Also a program that continuously writes to the flash was created. Finally the
program “nop” also used when testing the processor was used to measure the current,
when the flash was in standby mode.

The source code of the programs is listed in the appendix.

The Results
During the functionality test no errors were found.

The test results of the current measurements are shown in the table below.

Program\Radiation 0 kRad 1 kRad 2 krad 5 kRad
Read 3.1 mA 3.1 mA 3.1 mA 3.1 mA
Write 7.3 mA 7.7 mA 7.7 mA 7.6 mA
Standby 0 mA 0 mA 0 mA 0 mA

The test was conducted by measuring the current with a multimeter. In this test the
multimeter was not exact enough to show any indication of exposition to the
radiation. This result leads us to conclude that if the computer on DTUSat only

receives up to 5 kRad of radiation then the flash will continue to work and it will not
increase its power consumption. Due to lack of components it was not possible to test
more flash components, though a 10kRad test would have been nice. However it is
not likely that the satellite will be irradiated with more than 5 kRad during the first
year in space, which is the lifetime we expect the satellite to have.
This test does not show if bit flips occur while the component is exposed to radiation.
This will be tested at Rigshospitalet at a later point.

Conclusion

The result of the measurements does not give any reason to be concerned to whether
the components can survive the long-term radiation in space, since 10kRad is a much
larger amount of radiation than we expect to encounter. The measurements also make
it possible to determine the threshold for latch-up detection for the flight design.
However the tests do not show how the components will react to high-energy
particles, which can cause latch-up. The latch-up test will be made at a later point in
collaboration with the other hardware groups.
The tests we have conducted have resulted in the making of 3 good test boards that
are well suited for software development.

Appendix

blink
int main() {

int i, dir = -1,lys;
int last;

(unsigned int)(0xFFFF0000) = 0xff;
(unsigned int)(0xFFFF0010) = 0xff;
(unsigned int)(0xFFFF0030) = 0xff;
last = 1;
lys = 2;

while (1) {
 (unsigned int)(0xFFFF0034) = lys;

for(i=0; i< 10000; i++) {
if (i%10==0) *(unsigned int*)(0xFFFF0034) = last;
if ((i+9)%10==0) *(unsigned int*)(0xFFFF0030) = last;

}

(unsigned int)(0xFFFF0030) = lys;
last = lys;

if (dir==-1) {
lys = lys << 1;

} else {
lys = lys >> 1;

}

if (lys == 256 || lys==1) dir =- dir;
}

}

ram-check
#define PIO_BASE 0xFFFF0000
#define PIO_PER PIO_BASE + 0x00
#define PIO_OER PIO_BASE + 0x10
#define PIO_SODR PIO_BASE + 0x30
#define PIO_CODR PIO_BASE + 0x34

#define LED0 0x01
#define LED1 0x02
#define LED2 0x04
#define LED3 0x08
#define LED4 0x10
#define LED5 0x20
#define LED6 0x40
#define LED7 0x80
#define LED_ALL 0xFF

void led_on(int what) {
(volatile int)(PIO_CODR) = what;

}

void led_off(int what) {
(volatile int)(PIO_SODR) = what;

}

void led_init() {
(volatile int)(PIO_PER) = LED_ALL;
(volatile int)(PIO_OER) = LED_ALL;

}

void sleep(int j) {
int i;
for (i=0; i<j*500000; i++);

}

void error(int wrk) {
int i;
int work = wrk;

for (i=0; i<4; i++) {
led_off(LED_ALL);
led_on(work);
sleep(20);
work = work >> 8;

}

led_off(LED_ALL);
exit();

}

int main() {
int i;
char *ram_start = (char*)0x02000000;
char *ram_end = (char*)0x02080000;
char *work = ram_start;

led_init();

led_on(LED_ALL);
sleep(10);
led_off(LED_ALL);

while(work != ram_end) {
*(work) = 0x00;
work++;

}

work = ram_start;

while(work != ram_end) {
if (*(work) != 0x00) error((int)work);

*(work) = 0x55;
 if (*(work) != 0x55) error((int)work);

*(work) = 0xAA;
 if (*(work) != 0xAA) error((int)work);

*(work) = 0xFF;
 if (*(work) != 0xFF) error((int)work);

work++;

}

led_on(LED_ALL);

return 0;
}

watchdog
#define WD_OMR *(volatile int*)(0xFFFF8000)
#define WD_CMR *(volatile int*)(0xFFFF8004)
#define WD_CR *(volatile int*)(0xFFFF8008)
#define WD_SR *(volatile int*)(0xFFFF800C)

#define PIO_PER *(volatile int*)(0xFFFF0000)
#define PIO_OER *(volatile int*)(0xFFFF0010)
#define PIO_SODR *(volatile int*)(0xFFFF0030)
#define PIO_CODR *(volatile int*)(0xFFFF0034)

int main() {
int i, j;

PIO_PER = 0xFF;
PIO_OER = 0xFF;
PIO_SODR = 0xFF;

PIO_CODR = 0xAA;
for(j=0; j<50000; j++);
PIO_SODR = 0xFF;

PIO_CODR = 0x55;
for(j=0; j<50000; j++);
PIO_SODR = 0xFF;

PIO_CODR = 0xAA;
for(j=0; j<50000; j++);
PIO_SODR = 0xFF;

PIO_CODR = 0x55;
for(j=0; j<50000; j++);
PIO_SODR = 0xFF;

WD_OMR = 0x2340; /* Clear WDEN */
WD_CMR = 0x373E; /* HPCV=15, WDCLKS=MCK/128 */
WD_CR = 0xC071; /* Restart timer */
WD_OMR = 0x2343; /* Set WDEN, RSTEN */

while(1) {
for(i=1; i<256; i++) {

PIO_SODR=0xFF;
PIO_CODR = i;

for(j=0; j<1000*i; j++);
WD_CR = 0xC071; /* Restart timer */

}
}

}

usart
#define US0_CR *(volatile int*)0xfffd0000
#define US0_MR *(volatile int*)0xfffd0004
#define US0_IDR *(volatile int*)0xfffd000C
#define US0_CSR *(volatile int*)0xfffd0014
#define US0_RHR *(volatile int*)0xfffd0018
#define US0_THR *(volatile int*)0xfffd001c
#define US0_BRGR *(volatile int*)0xfffd0020
#define US0_RTOR *(volatile int*)0xfffd0024
#define US0_TTGR *(volatile int*)0xfffd0028
#define US0_RCR *(volatile int*)0xfffd0034
#define US0_TCR *(volatile int*)0xfffd003C

#define PIO_PDR *(volatile int*)0xffff0004
#define PS_PCER *(volatile int*)0xffff4004

#define PIO_BASE 0xFFFF0000
#define PIO_PER PIO_BASE + 0x00
#define PIO_OER PIO_BASE + 0x10
#define PIO_SODR PIO_BASE + 0x30
#define PIO_CODR PIO_BASE + 0x34

#define LED0 0x01
#define LED1 0x02
#define LED2 0x04
#define LED3 0x08
#define LED4 0x10
#define LED5 0x20
#define LED6 0x40
#define LED7 0x80
#define LED_ALL 0xFF

void led_on(int what) {
(volatile int)(PIO_CODR) = what;

}

void led_off(int what) {
(volatile int)(PIO_SODR) = what;

}
void led_init() {

(volatile int)(PIO_PER) = LED_ALL;
(volatile int)(PIO_OER) = LED_ALL;

}
void sleep(int j) {

int i;
for (i=0; i<j*500000; i++);

}

int main (void) {
 int value=0;
 US0_CR = 0x000001ac;
 US0_RTOR = 0;
 US0_TTGR = 0;
 US0_RCR = 0;
 US0_TCR = 0;
 US0_MR = 0x000008c0;
 US0_IDR = 0xffffffff;
 US0_BRGR = 0x00000050;
 PS_PCER = 0xffffffff;
 PIO_PDR = 0x0070e000;

 US0_CR = 0x00000050;
 led_init();

 led_on(LED_ALL);
sleep(5);
led_off(LED_ALL);

 while(1) {
 value = US0_RHR;
 led_on(value);
 led_off(value);

 US0_THR = value+1;
 for (; (US0_CSR & (1 << 1)) == 0 ;);

 }

 return(0);
}

flash-read
int main() {

int i;

(unsigned int)(0xFFFF0000) = 0xff;
(unsigned int)(0xFFFF0010) = 0xff;
(unsigned int)(0xFFFF0034) = 0xff;

 for (i=0; i<5000000; i++);

(unsigned int)(0xFFFF0000) = 0xff;
(unsigned int)(0xFFFF0010) = 0xff;
(unsigned int)(0xFFFF0030) = 0xff;

while (1) {
 i = *(volatile int *)(0x03000000);

}

}

flash-write
#define FLASH_Unlock_first 0xAA
#define FLASH_Unlock_second 0x55
#define FLASH_Unlock_sector_erase0x80
#define FLASH_Program 0xA0
#define FLASH_Sector_erase 0x30

#define FLASH_Sector_size 0x10000

#define BIT_3_MASK 0x08

#define FLASH_ERR_OK 0x00
#define FLASH_ERR_TIMEOUT 0x01
#define FLASH_ERR_VERIFY 0x02

#define TIMEOUT 50000

#define PIO_BASE 0xFFFF0000
#define PIO_PER PIO_BASE + 0x00
#define PIO_OER PIO_BASE + 0x10
#define PIO_SODR PIO_BASE + 0x30
#define PIO_CODR PIO_BASE + 0x34

#define LED0 0x01
#define LED1 0x02
#define LED2 0x04
#define LED3 0x08
#define LED4 0x10
#define LED5 0x20
#define LED6 0x40
#define LED7 0x80
#define LED_ALL 0xFF

extern unsigned char prog_array[];
extern long prog_array_size();

void led_on(int what) {
(volatile int)(PIO_CODR) = what;

}

void led_off(int what) {
(volatile int)(PIO_SODR) = what;

}

void led_init() {
(volatile int)(PIO_PER) = LED_ALL;
(volatile int)(PIO_OER) = LED_ALL;

}

int program_byte(void *adr, unsigned char byte) {
 volatile unsigned char *flash=(volatile unsigned char*)FLASH_BASE;

volatile unsigned char *prg_adr = (volatile unsigned char *)adr;
int timeout = TIMEOUT;
int res = FLASH_ERR_OK;

/* Write Program Command Sequence */
*flash = FLASH_Unlock_first;
*flash = FLASH_Unlock_second;
*flash = FLASH_Program;
*prg_adr = byte;

/* Data Poll and Verify */
while (--timeout > 0) {
 if (*prg_adr == byte) break;
}

if (timeout < 0) res = FLASH_ERR_TIMEOUT;

return res;
}

int erase_sector(void *sect) {
 volatile unsigned char *flash=(volatile unsigned char*)FLASH_BASE;

volatile unsigned char *sect_adr=(volatile unsigned char *)sect;
volatile unsigned char *adr;
int timeout = TIMEOUT;

int res = FLASH_ERR_OK;

/* Write Erase Command Sequence */
*flash = FLASH_Unlock_first;
*flash = FLASH_Unlock_second;
*flash = FLASH_Unlock_sector_erase;
*flash = FLASH_Unlock_first;
*flash = FLASH_Unlock_second;
*sect_adr = FLASH_Sector_erase;

/* Wait for erase timer to timeout */
while ((*sect_adr & BIT_3_MASK) == 1);

/* Data Poll from system */
while (--timeout > 0) {

if (*sect_adr == 0xFF) break;
}

 if (timeout < 0) res = FLASH_ERR_TIMEOUT;

/* Verify data */
for (adr = sect_adr; adr < sect_adr + FLASH_Sector_size; adr++){

if (*adr != 0xFF && res == FLASH_ERR_OK) {
res = FLASH_ERR_VERIFY;
break;

}
}

return res;
}

void sleep(int j) {
int i;
for (i=0; i<j*500000; i++);

}

int main() {
int i=0;
char *flash_start = (char*)FLASH_BASE;
char *flash_end = (char*)(FLASH_BASE + 0x200000);
int flash_block_size = 0x10000;
char *work = flash_start;

led_init();

led_on(LED_ALL);
sleep(10);
led_off(LED_ALL);

while (work != flash_end) {
led_off(LED_ALL);
led_on(i++);
erase_sector(work);
sleep(10);
work += flash_block_size;

}

led_on(LED_ALL);
sleep(10);
led_off(LED_ALL);

work = flash_start;

sleep(10);

while(work != flash_end) {
 program_byte(work, ((int)work) % 0xff);

 work++;
}

led_on(LED_ALL);

return 0;
}

flash-check
#define FLASH_Unlock_first 0xAA
#define FLASH_Unlock_second 0x55
#define FLASH_Unlock_sector_erase0x80
#define FLASH_Program 0xA0
#define FLASH_Sector_erase 0x30

#define FLASH_Sector_size 0x10000

#define BIT_3_MASK 0x08

#define FLASH_ERR_OK 0x00
#define FLASH_ERR_TIMEOUT 0x01
#define FLASH_ERR_VERIFY 0x02

#define TIMEOUT 50000

#define PIO_BASE 0xFFFF0000
#define PIO_PER PIO_BASE + 0x00
#define PIO_OER PIO_BASE + 0x10
#define PIO_SODR PIO_BASE + 0x30
#define PIO_CODR PIO_BASE + 0x34

#define LED0 0x01
#define LED1 0x02
#define LED2 0x04
#define LED3 0x08
#define LED4 0x10
#define LED5 0x20
#define LED6 0x40
#define LED7 0x80
#define LED_ALL 0xFF

void led_on(int what) {
(volatile int)(PIO_CODR) = what;

}

void led_off(int what) {
(volatile int)(PIO_SODR) = what;

}

void led_init() {
(volatile int)(PIO_PER) = LED_ALL;
(volatile int)(PIO_OER) = LED_ALL;

}

int program_byte(void *adr, unsigned char byte) {
 volatile unsigned char *flash=(volatile unsigned char*)FLASH_BASE;

volatile unsigned char *prg_adr = (volatile unsigned char *)adr;
int timeout = TIMEOUT;
int res = FLASH_ERR_OK;

/* Write Program Command Sequence */
*flash = FLASH_Unlock_first;
*flash = FLASH_Unlock_second;
*flash = FLASH_Program;
*prg_adr = byte;

/* Data Poll and Verify */
while (--timeout > 0) {

if (*prg_adr == byte) break;
}

if (timeout < 0) res = FLASH_ERR_TIMEOUT;

return res;
}

int erase_sector(void *sect) {
 volatile unsigned char *flash=(volatile unsigned char*)FLASH_BASE;

volatile unsigned char *sect_adr=(volatile unsigned char *)sect;
volatile unsigned char *adr;
int timeout = TIMEOUT;
int res = FLASH_ERR_OK;

/* Write Erase Command Sequence */
*flash = FLASH_Unlock_first;
*flash = FLASH_Unlock_second;
*flash = FLASH_Unlock_sector_erase;
*flash = FLASH_Unlock_first;
*flash = FLASH_Unlock_second;
*sect_adr = FLASH_Sector_erase;

/* Wait for erase timer to timeout */
while ((*sect_adr & BIT_3_MASK) == 1);

/* Data Poll from system */
while (--timeout > 0) {

if (*sect_adr == 0xFF) break;
}

 if (timeout < 0) res = FLASH_ERR_TIMEOUT;

/* Verify data */
for (adr = sect_adr; adr < sect_adr + FLASH_Sector_size; adr++){

if (*adr != 0xFF && res == FLASH_ERR_OK) {
res = FLASH_ERR_VERIFY;
break;

}
}

return res;
}

void sleep(int j) {
int i;

for (i=0; i<j*500000; i++);
}

void error(int wrk) {
int i;
int work = wrk;
led_off(LED_ALL);
led_on(0xAA);
sleep(2);
led_off(LED_ALL);
led_on(0x55);
sleep(2);
led_off(LED_ALL);
led_on(0xAA);
sleep(2);
led_off(LED_ALL);
led_on(0x55);
sleep(2);

for (i=0; i<4; i++) {
 led_on(LED_ALL);
 sleep(2);

led_off(LED_ALL);
led_on(work);
sleep(20);
work = work >> 8;

}

led_off(LED_ALL);
exit();

}

int main() {

int i=0;
char *flash_start = (char*)FLASH_BASE;
char *flash_end = (char*)(FLASH_BASE + 0x200000);
int flash_block_size = 0x10000;
char *work = flash_start;

led_init();

led_on(LED_ALL);
sleep(10);
led_off(LED_ALL);

while (work != flash_end) {
led_off(LED_ALL);
led_on(i++);
erase_sector(work);
sleep(10);
work += flash_block_size;

}

led_on(LED_ALL);
sleep(10);
led_off(LED_ALL);

work = flash_start;

sleep(10);

while(work != flash_end) {
if ((*(work) & 0xFF) != 0xFF) {

 error((int)work);
 }

program_byte(work, 0x00);
 if (*(work) != 0x00) error((int)work);

 work++;

}

led_on(LED_ALL);

return 0;
}

ram-check
#define PIO_BASE 0xFFFF0000
#define PIO_PER PIO_BASE + 0x00
#define PIO_OER PIO_BASE + 0x10
#define PIO_SODR PIO_BASE + 0x30
#define PIO_CODR PIO_BASE + 0x34

#define LED0 0x01
#define LED1 0x02
#define LED2 0x04
#define LED3 0x08
#define LED4 0x10
#define LED5 0x20
#define LED6 0x40
#define LED7 0x80
#define LED_ALL 0xFF

void led_on(int what) {
(volatile int)(PIO_CODR) = what;

}

void led_off(int what) {
(volatile int)(PIO_SODR) = what;

}

void led_init() {
(volatile int)(PIO_PER) = LED_ALL;
(volatile int)(PIO_OER) = LED_ALL;

}

void sleep(int j) {
int i;
for (i=0; i<j*500000; i++);

}

void error(int wrk, int err) {
int i;
int work = wrk;
led_off(LED_ALL);
led_on(0xAA);

sleep(2);
led_off(LED_ALL);
led_on(0x55);
sleep(2);
led_off(LED_ALL);
led_on(0xAA);
sleep(2);
led_off(LED_ALL);
led_on(0x55);
sleep(2);

for (i=0; i<4; i++) {
 led_on(LED_ALL);
 sleep(2);

led_off(LED_ALL);
led_on(work);
sleep(20);
work = work >> 8;

}

led_on(LED_ALL);
sleep(2);
led_off(LED_ALL);
led_on(err);
sleep(20);

led_off(LED_ALL);
exit();

}

int main() {
int i;
char *ram_start = (char*)0x02000000;
char *ram_end = (char*)0x02080000;
char *work = ram_start;

led_init();

led_on(LED_ALL);
sleep(10);
led_off(LED_ALL);

while(work != ram_end) {
*(work) = 0x00;
work++;

}

work = ram_start;

while(work != ram_end) {
if (*(work)&0xff != 0x00)
 error((int)work,(int)(*(work)&0xff));

*(work) = 0x55;
 if (*(work) != 0x55) error((int)work,(int)(*(work)&0xff));

*(work) = 0xAA;
 if (*(work) != 0xAA) error((int)work,(int)(*(work)&0xff));

*(work) = 0xFF;
 if (*(work) != 0xFF) error((int)work,(int)(*(work)&0xff));

work++;
}

led_on(LED_ALL);

return 0;
}

