
Enhancements to the CPX I2C Bus

Keith McCabe
California Polytechnic State University, San Luis Obispo

December 10, 2007

Abstract

The CPX Bus is a standardized CubeSat bus, consisting of a power subsystem, commu-
nications subsystem, and Command & Data handling (C&DH) subsystem. The CPX Bus
uses three PIC18 microprocessors to accomplish both C&DH and comm functions, all of
which are connected by a shared I2C bus. This paper describes, in detail, the current
state of the hardware and software that runs the CPX I2C bus. Additionally, this paper
proposes a software upgrade to the CPX I2C bus, significantly increasing the modularity,
robustness, and ease-of-use of the current software. The upgrade also introduces limited
profiling of the I2C bus and the ability to download this data to earth. Further, this paper
describes how to add an IPC command to the CPX I2C bus.

Contents

1 Introduction 3
1.1 CubeSat Project Introduction . 3
1.2 CubeSats Developed at Cal Poly . 4

1.2.1 CP1 . 4
1.2.2 CP2/CP4 . 4
1.2.3 CP3 . 4

2 CPX I2C Bus 7
2.1 Interprocessor Communication . 7

2.1.1 Master . 8
2.1.2 Slave . 8

2.2 Problems . 10
2.3 On-Orbit Performance . 10

3 Modifications 12
3.1 Changes . 12

3.1.1 One Message, One Transaction . 12
3.1.2 Error Detection . 12
3.1.3 Redesigned API . 13

3.2 System Impacts . 13
3.3 How To Add Commands . 14

3.3.1 IPC Commands & TNC Packet Types 14

4 Future Work 20
4.1 On Orbit Characterization . 20
4.2 Uploadable Code . 20
4.3 Arbitrary Interface for Modifying Parameters 20

A Acknowledgements 21

1

B Source Code Excerpts 22
B.1 transferI2C() . 22
B.2 Comm I2C ISR . 24

2

Chapter 1

Introduction

Since most CubeSats use low-power, low-speed microprocessors, simple serial buses, such
as I2C, SPI and UART, are commonly used as a main communications channel. Case in
point: the CPX Bus uses I2C as both a common bus for sensors as well as a means for
communicating between the C&DH and communications processors. This paper describes
the current Interprocessor Communications protocol and discusses its strengths and weak-
nesses. This paper goes on to design and implement changes in an attempt to address the
weaknesses of the current design.

1.1 CubeSat Project Introduction

The CubeSat program is a project birthed and supported by Cal Poly and Stanford which
aims to prove the feasibility of a new class of ”standardized picosatellites”. These pi-
cosatellites can proceed from concept to finished design quickly in order to ”reduce cost
and development time [and] provide increased accessibility to space”[1].

The short development cycle is made possible by the small mass and simple volume
specifications of a CubeSat. With a simple, standardized satellite geometry, undergraduate
university students have the opportunity to design, build, test, and actually see their
satellite function in space, all within the time frame of an average college student (4-5
years). Additionally, the responsive nature of CubeSats has benefits to industry as well,
and recent years have seen increased corporate involvement in the CubeSat community.

The CubeSat project has seen two successful launches in the past year, including the
GeneSat launch in December of 2006, and the DNEPR Launch on April 17, 2007, which
carried both CP3 and CP4 to orbit. The CubeSat community is currently looking forward
to at least one launch in mid 2008.

3

1.2 CubeSats Developed at Cal Poly

1.2.1 CP1

CP1 marks Cal Poly’s first foray as a CubeSat Developer; it was initially used to help the
P-POD development team understand the issues that external CubeSat Developers were
facing[3]. The CP1 core team was comprised of seven Cal Poly students from aerospace and
electrical engineering; the software was written without any formal experience in software
development.

Figure 1.1: CP1: Cal Poly’s First Satellite

CP1’s only flight model was lost on July 26th, 2007, when the launch vehicle failed.

1.2.2 CP2/CP4

After CP1’s development finished, a new team was formed at Cal Poly dedicated solely to
building CubeSats. The PolySat project was comprised of many members of the original
CP1 team. CP2 was PolySat’s effort to create a satellite with a standardized bus, usable
for future CubeSats. The electronics and structure were developed from scratch by Cal
Poly students. CP2 also marked the beginning of a dedicated software team. The satellite
software is primarily written in C (as opposed to CP1, which used BASIC).

The first CP2 flight model was lost on July 26th, 2007, when the launch vehicle failed.
However, the second model was manifested as CP4 on the second DNEPR launch, and
successfully made it to oribt.

1.2.3 CP3

CP3’s development began near the end of the CP2 development cycle. Many lessons from
the development of CP2 went into CP3, resulting in several performance improvements.

4

Figure 1.2: CP2: Cal Poly’s Second Satellite

As you can see from figure 1.2 and figure 1.4, the two satellites are externally very similar,
and are identified by the shape of their solar cells. The only major difference between CP2
and CP3 is the payload that each flew.

CP3 was launched on a DNEPR rocket on April 17, 2007 and has been working since.

5

Figure 1.3: CP4: Not Cal Poly’s Fourth Satellite. Image taken by AeroCube-2 shortly
after deployment

Figure 1.4: CP3: Cal Poly’s Third Satellite

6

Chapter 2

CPX I2C Bus

The CPX I2C bus is the main communication channel for the CPX Satellite Bus. Digital
bus data, with the exception of the battery monitors, uses the I2C bus. The devices hanging
off the I2C bus include:

C&DH PIC C&DH Board
COMM A PIC C&DH Board
COMM B PIC C&DH Board
EEPROM #1 C&DH Board
EEPROM #2 C&DH Board
Power ADC Power Board
C&DH ADC C&DH Board
Side Panel ADC Side Panels
Magnetorquer/Magnetometer Controller Side Panels

We can divide these devices into two distinct groups: ”dumb” slaves, of which we have
no control over the I2C module for (such as the ADCs) and ”smart” slaves, which we have
to write I2C code for. The latter group contains the comm controllers (which have identical
code) and the payload processor, which changes from mission to mission.

Interprocessor Communication refers to passing messages between ”smart” slaves and
the C&DH processor as it acts as the I2C Master. While the I2C specification does include
support for multiple masters on the same bus, having a device act as both a master and
addressable slave is very difficult. Thus, this paper assumes that there is a single master
on the bus, being the C&DH controller.

2.1 Interprocessor Communication

The IPC code is built upon the modular I2C libraries written by Jacob Farkas[3]. These
abstract away most of the PIC-specific I2C details, providing a byte-oriented interface to
the I2C master. The I2C slaves need to provide their own ISR to use the bus.

7

The IPC protocol uses two I2C transactions to accomplish a single message. First, the
Master addresses the slave and writes the command byte as well as any associated data.
Then, the Master immediately initiates a Master-Receive transaction, and reads the slave’s
response to the command.

Each side of the IPC is discussed in depth below.

2.1.1 Master

The Master side of the IPC is implemented in the function transferI2C(), in the file
shared/cp2-i2c.c. The function’s code in its entirety can be seen in appendix B.1.

The function uses four inputs: the two arguments, which are the slave address and IPC
command to send, as well as two global buffers (i2cRxBuffer and i2cTxBuffer), which are
used to as a data source or sink for transmit and receive, respectively. Additionally, the
function uses two tables to map commands to their expected message recieve and transmit
lengths.

First, the master uses the command byte to index into the command length table to
determine how long the Master-Transmit should be. This table maps command numbers to
their expected recieve and transmit lengths. Since the transmit length is pulled out of the
table, it is not possible to have variable length Master-Transmit messages. Additionally,
the recieve length is only used by the slave in some cases, and is not checked by the master.

Next, the master initiates the Master-Transmit. This is a fairly straightforward piece
of code, except for the issue of checking slave acknowldgements. Due to hardware issues on
CP2, CP2 CheckAck used to return an erroneous value, and was commented out. However,
on the newer revisions of the C&DH board, this function now works correctly.

Once the Master-Transmit transaction has stopped, the master immediately starts a
Master-Recieve transaction to the same slave. The master uses the first data byte as the
transaction length, and reads that number of bytes from the bus. The master sends a
NoACK pulse in response to the last data byte, in accordance with the I2C specification.

2.1.2 Slave

Since the CPX bus will almost always include a communications system, I am using the
comm controllers as an example slave. Other slaves on the CPX include payload processors
and possibly side-panel controllers in the future.

The code that handles the IPC for the Comm controllers is displayed in appendix B.2.
Since this is an Interrupt Service Routine (ISR), it is heavily intermixed with the PIC18’s
hardware I2C module. For the purpose of this discussion, this paper will gloss over most
of the gory hardware details. Consult the PIC18 datasheet for more information about the
hardware module.

The ISR has five states: Master-Transmit after the address (I2C STATE1), Master-
Transmit after a data byte (I2C STATE2), Master-Receive after the address (I2C STATE3),

8

Master-Receive after a data byte (I2C STATE4), and Master-NoACK (I2C STATE5). The
diagrams in figure 2.2 and figure 2.1, taken from the PIC18 Datasheet, display when inter-
rupts are fired, and which state the ISR uses for that interrupt.

Figure 2.1: PIC18 I2C ISR for a Master-Transmit transaction

Figure 2.2: PIC18 I2C ISR for a Master-Receive transaction

The two states handling Master-Transmits are straightforward, dumping the command
byte into a special variable and the message into the i2cRxBuffer. Since no interrupt is

9

generated at the end of a Master-Transmit, processing of the command is postponed until
the Master-Receive.

The Master-Receive states each contain a switch statement based on the command byte
sent in the previous Master-Transmit transaction. Each case loads up the data variable,
which is written to the I2C register. During the Master-Receive after a data byte, most
states set a bit in either the commTxFlags or commPayloadTxFlags variables. These
are the mechanism with which the ISR communicates with the main loop of the comm
controller; these variables are checked, and action is taken based on which bits are set.

2.2 Problems

This protocol assumes that, for a given command, the slave controller can come up with
a response nearly immediately. In the comm controller’s case, this is true; the main loop
is not involved in loading data for the Master-Receive. However, for slaves that operate
under a command-process-respond paradigm, our IPC requires at least four transactions–
the Master-Transmit/Receive pair for the command, and the Master-Transmit/Receive pair
once the data has been processed and made available. The first Master-Receive and the
second Master-Transmit serve no purpose, other than being required by the IPC protocol.

In order to support the ”immediate response” functionality required by our IPC, the
comm controller intermixes the IPC commands with the low-level I2C ISR. This makes the
ISR difficult to maintain; adding a new IPC command requires adding it to two different
switch statements, as well as making space in the flags, and adding handlers in the main
loop for those flags.

Additionally, this protocol contains no safeguards against bit-flips on the wire. While
lab testing has not shown significant error rates, it is difficult to predict the results in the
harsh space environment, with large temperature changes and exposure to radaition. Due
to the on-orbit failure of CP4, there is considerable external pressure to measure how often
erroneous I2C transactions happen on-orbit.

2.3 On-Orbit Performance

Both CP3 and CP4 have been in orbit for over six months as of this writing. The Cal Poly
Operations team has been experiencing difficulties uplinking to both satellites, due to the
transceivers being less sensitive than we had anticipated. After upgrading and tuning our
groundstation, we experienced somewhat-acceptable uplink rates to both satellites.

CP4 suffered a failure several months ago and can no longer communicate meaningful
telemetry to earth. The current hypothesis is that the I2C bus has been rendered inop-
erable, either by hardware or software failure, and the comm controllers can no longer
communicate with the C&DH processor. It is unknown whether the problem will ever fix

10

itself, but the Cal Poly team continues to contact CP4 to asses the health of the comm
subsystem.

Although CP3’s primary mission remains unfulfilled, the satellite bus continues to op-
erate. We continue to receive data dumps, and all systems are operating well within normal
parameters without noticeable degradation.

11

Chapter 3

Modifications

3.1 Changes

3.1.1 One Message, One Transaction

By moving to one I2C transaction per message, we can address the issue of wasting trans-
actions for certain types of slaves. The on-the-wire representation is also simpler, which
aids in debugging when using an oscilloscope or logic analyzer.

On the downside, the comm controller interface loses efficiency; since messages are no
longer ”bidirectional”, there is extra overhead to manually write to and subsequently read
from the comm controller. However, the comm controller API stays nearly identical, as
most of the changes necessary are underneath the preexisting cdh-comm API. Since the
satellite’s performance is more than acceptable at this time, the slight performance hit is
not expected to cause any problems.

3.1.2 Error Detection

In order to detect bit flips on the bus, an 8-bit CRC was added to each message. Since the
maximum buffer size on either end is 256 bytes, an 8-bit CRC was deemed to be sufficient.
The ATM CRC-8 Polynomial[4] was chosen for the CRC calculation, though switching
polynomials is trivial.

The error detection is the basis for calculating message acceptance and rejection statis-
tics. Every time a message is passed between the processors, both sides increment the
message count. If the CRC fails, the rejected count is incremented. If the CRC succeeds,
the message is marked as accepted. Hardware failures, such as a slave failing to Ack or
other, more esoteric problems, are counted separately. These statistics can be retrieved via
a groundstation command.

12

3.1.3 Redesigned API

Since the large switch statements in the comm controller’s ISR were difficult to maintain,
and the use of global buffers on the C&DH side introduced a lot of stupid bugs into new
code, both APIs were redesigned.

On the master side, there are two new functions: readFromCPU() and writeToCPU().
They read from and write to a slave CPU, respectively. These functions also take care of
calculating the message CRC, in the case of writeToCPU(), and checking it against the
received data, in the case of readFromCPU(). In certain cases, readFromCPU will attempt
to re-request the data if it receives a message with a bad CRC.

For the slave side, there are now two functions: writeI2C() and readI2C(). However, due
to the asynchronous nature of an I2C slave device, these functions require some explanation.

readI2C() has an associated global flag, i2cMessageReceived, which indicates when
”fresh” data will be returned. Calling readI2C() with i2cMessageRecieved false will return
the last message the bus recieved, although this situation is prone to concurrency issues and
not recommended. If the master attempts to write to the slave while i2cMessageReceived
is true, the data will be silently discarded.

writeI2C() simply sets the slave response to the specified message. The slave response
is reset back to the default message once the specified response has been fully written out
in a Master-Receive transaction. Since the slave normally sets the slave response as a result
of receiving a message from the master, there is no need for the slave to be able to check
whether the response has been ”used” or not.

3.2 System Impacts

As a result of the changes, there was both a redistribution of responsibility between masters
and slaves, as well as some subtle performance changes. Specifically, the C&DH controller
now manually handles the Comm controller’s I2C response. The comm controller’s re-
sponses can be diagramed with a state machine, figure 3.1.

Performance-wise, one of the most common scenarios to be affected is retrieving a
groundstation command from the comm controller. Since the main comm loop needs to de-
tect that an I2C command has been recieved and process it, responses to the IPC COMM LOAD *
commands are not immediately available for reading. The C&DH controller is forced to
busy-wait and poll the comm controller for the correct command byte.

The default message for the comm controller requires more time to transmit now, as
demonstrated in figure 3.2. As shown by the markers, there is a significant pause between
bytes, caused by the comm controller using clock stretching while it prepares the next
byte. This is due to the comm controller calculating the CRC for each byte in the ISR.
One possible fix is to employ a CRC lookup table and fix the range of the comm status
byte.

13

Figure 3.1: Comm response state

On a better note, there is now a single ”funnel” for I2C commands on the comm con-
trollers. Also, with support for variable-length Master-Transmit transactions, the number
of bus commands has been greatly reduced. With fixed-size Master-Transmit transac-
tions, the bus was forced to have a separate I2C command to go with each AX.25 Packet
type the C&DH wanted to send to earth. Now, there is a single ”Transmit this data”
(IPC COMM TX DATA) I2C command that wraps the packet type and any associated
data.

In order to prevent race conditions, the comm I2C ISR was modified slightly. It now
interrupts on start and stop bits, in addition to all of the previous states. This allows the
comm controller to definitively know when it is safe to move data in and out of the I2C
buffers.

3.3 How To Add Commands

3.3.1 IPC Commands & TNC Packet Types

While Jacob Farkas’ description of how to add a groundstation command[3] is still mostly
correct, the steps to add an IPC command have changed signficantly. As an example, let’s
add the necessary commands to allow the C&DH processor to retrieve the I2C statistics
from the comm controller. Additionally, let’s have the C&DH return the statistics in
response to an uplinked command.

14

Figure 3.2: Comm Default Response on the Oscilloscope

15

IPC Command definitions are stored in cp2-i2c.h. Since this is going to be a bidirec-
tional transaction, we’ll need two commands. Using the supplied naming conventions, we’ll
use the names IPC COMM LOAD I2C STATS and IPC COMM I2C STATS.

Listing 3.1: New command definitions
68 #define IPC_COMM_TX_DATA 0x10

69 #define IPC_COMM_TX_BEACON 0x11 // Transmits data , + CW

70
71 #define IPC_COMM_LOAD_I2C_STATS 0x12

72 #define IPC_COMM_I2C_STATS 0x13

The pair of commands we’re adding fit the ”load/retrieve” paradigm, in which the
master sends an IPC COMM LOAD XXXX command, pauses, and then attempts to read
the resulting IPC COMM XXXX command. Since this is a common pattern, we can
use the generic getValueFromComm() function, which implements this pattern. Because
getValueFromComm() is the ”raw” interface to comm controller properties, it would be
best to wrap it in an identifiable name, such as getI2CStatsFromComm. The code for this
is in listing 3.2

Listing 3.2: New command definitions
88 char getValueFromComm(unsigned char cmdArg , unsigned char expectedCmd ,

89 unsigned char *buf)

90 {

91 uint8 cmd = 0, dataLen = 0, retries;

92 commWait ();

93
94 if ((err = writeToCPU(PIC_COMM , cmdArg , msgBuf , 0)) != ERR_NONE) {

95 return err;

96 }

97
98 // XXX: Do we need a delay here?

99 for (retries = 0; retries < COMM_GET_RETRIES; retries ++) {

100 Delay1KTCYx (20);

101
102 if ((err = readFromCPU(PIC_COMM , &cmd , msgBuf , &dataLen , 1)) !=

103 ERR_NONE) {

104 return err;

105 }

106
107 if (cmd == expectedCmd) {

108 break;

109 }

110 }

111
112 if (retries == COMM_GET_RETRIES) {

113 return ERR_I2C_BAD_MSG;

114 }

115
116 memcpy(buf , (void *)msgBuf , dataLen);

117 return ERR_NONE;

118 }

119
120 // ... snip for brevity ...

16

121
122 char getI2CStatsFromComm(unsigned char *data)

123 {

124 return getValueFromComm(IPC_COMM_LOAD_I2C_STATS , IPC_COMM_I2C_STATS , data);

125 }

We need to add support for the necessary commands on the comm processor. The I2C
command funnel is in the function handleMessage() in comm-main.c. Add a case to the
switch statement for the command IPC COMM LOAD I2C STATS.

Listing 3.3: Adding command to the comm funnel
388 void handleMessage () {

389 static uint8 cmd , dataLen;

390 if ((err = readI2C (&cmd , msgBuf , &dataLen)) != ERR_NONE) {

391 return;

392 }

393
394 switch (cmd) {

395 case IPC_COMM_LOAD_GS_CMD:

396 COMM_INT = 0;

397 writeI2C(IPC_COMM_GS_CMD , &uplinkCommand.command ,

398 uplinkCommand.len + 1);

399 break;

400
401 case IPC_COMM_LOAD_SNAP:

402 writeI2C(IPC_COMM_SNAP , (void *)& commSensorSnapData ,

403 sizeof(commSensorSnapData));

404 break;

405
406 case IPC_COMM_ACK_CMD:

407 tncTxPacket(PACKET_CMD_ACK , 0, 0);

408 break;

409
410 case IPC_COMM_NACK_CMD:

411 tncTxPacket(PACKET_CMD_NACK , 0, 0);

412 break;

413
414 case IPC_COMM_SET_TX_POWER:

415 cc1000WriteRegister(CC1000_PA_POW , msgBuf [0]);

416 break;

417
418 case IPC_COMM_TX_BEACON:

419 cwTransmitBeacon ();

420 tncTxPacket(PACKET_COMM_ID , 0, 0);

421 tncTxPacket(msgBuf [0], msgBuf + 1, dataLen);

422 break;

423
424 case IPC_COMM_TX_DATA:

425 tncTxPacket(msgBuf [0], msgBuf + 1, dataLen);

426 break;

427
428 case IPC_COMM_LOAD_I2C_STATS:

429 ((uint16 *) msgBuf)[0] = accepted;

430 ((uint16 *) msgBuf)[1] = rejected;

431 ((uint16 *) msgBuf)[2] = totalRead;

432 ((uint16 *) msgBuf)[3] = totalSent;

17

433 writeI2C(IPC_COMM_I2C_STATS , msgBuf , sizeof(uint16) * 4);

434 break;

435
436 default:

437 break;

438 }

439 }

Now that the comm controllers will respond with the correct data, let’s add the com-
mands necessary to transmit the data to the ground. All packets transmitted from the
satellite have a packet type; this is a part of the comm controller’s TNC, and is described
in depth in Chris Noe’s paper on the comm subsystem[2]. So, we want to add a new packet
type for I2C statistics. These are located in comm-tnc, and the new command has been
added in listing 3.4.

Listing 3.4: Adding a new packet type.
49 #define PACKET_COMM_ID 0x0B

50 #define PACKET_ADCS_DUMP 0x0C

51
52 #define PACKET_I2C_STATS 0x0D

Since the comm now supports the correct packet type, all that’s left is to tie everything
together. After following Jacob Farkas’ instructions, you should have added a case to the
switch statement in cdh-exec cmds.c, similar to the one below. To respond to the command,
we simply (ab)use the commandData buffer to retrieve the I2C statistics from the currently
active comm, fill it with the C&DH I2C statistics as well, and then use commTransmit,
which passes the message over I2C and into the PACKET * funnel (which is the code in
listing 3.3.

Listing 3.5: Adding the handler for the Groundstation command.
1531 // --------------------

1532 // Return the I2C Stats

1533 // --------------------

1534 case CMD_CDH_GET_I2C_STATS:

1535 if (cdhCurrentState == NORMAL_OPS) {

1536 if ((err = getI2CStatsFromComm(commandData)) == ERR_NONE) {

1537
1538 ((uint16 *) commandData)[4] = accepted;

1539 ((uint16 *) commandData)[5] = rejected;

1540 ((uint16 *) commandData)[6] = totalRead;

1541 ((uint16 *) commandData)[7] = resent;

1542 ((uint16 *) commandData)[8] = totalSent;

1543 ((uint16 *) commandData)[9] = hwFailures;

1544
1545 commandAck ();

1546 commTransmit(PACKET_I2C_STATS , commandData ,

1547 sizeof(uint16) * 10, 0);

1548 }

1549 else {

1550 commandNack(DEFAULT_NACK_ERROR_CODE);

1551 logError(err);

18

1552 }

1553 }

1554 else {

1555 commandNack(DEFAULT_NACK_ERROR_CODE);

1556 }

1557 break;

19

Chapter 4

Future Work

4.1 On Orbit Characterization

Since our satellite currently does not have the capability to upload code, testing the changes
described in this document are currently pending another launch. The next launch carrying
a CP satellite is currently scheduled for Summer ’08; it is up to the operations team for
that satellite to gather the data on how the bus is performing in its target environment.

4.2 Uploadable Code

Although the CubeSat community continues to move towards having at least one launch
per year, putting a CubeSat in orbit is still an expensive and time-consuming endeavour.
In order to get the most out of the hardware on orbit, being able to modify at least a
portion of the runnable code on the satellite would increase the usefulness of the bus.

4.3 Arbitrary Interface for Modifying Parameters

Modifying a parameter of the satellite, such as a rate for taking data, is a very common
operation. As it stands now, we have separate commands for each modifiable parameter,
although they share a lot of common code. By specifying a generic interface, it would be
possible to cut down on a lot of ”boilerplate” code and reduce maintenance costs of the
embedded software. One possibility is to use raw memory locations, and write tools that
determine a symbol’s location in memory using the linker output. Alternatively, a static
structure could be defined that specifies which parameters are modifiable.

20

Appendix A

Acknowledgements

• Jacob Farkas, Chris Noe, and Kyle Leveque for getting me involved in this whole
mess.

• The entire MSTL Crew, past and present, for making the lab a great place to work.

• My family, for their unending support.

• Dr. Jordi Puig-Suari, for going crazy each and every day.

• Dr. John Bellardo, for his guidance and understanding.

21

Appendix B

Source Code Excerpts

All code for this project can be pulled out of the PolySat svn from /Home/kmccabe/i2c-
branch/ @ rev 8491.

B.1 transferI2C()

Listing B.1: Old TransferI2C Function frame
1 /*

2 * FUNCTION:

3 * transferI2C

4 *

5 * DESCRIPTION:

6 * transferI2C () implements our generic I2C communication protocol

7 * it consists of 2 steps

8 * 1: the master writes a single byte command to the slave , along with any

9 * data associated with that command (up to 256 bytes , currently).

10 * the data is stored in buf , and is txlength long

11 * 2: the master reads from the slave. first byte read is the length of the

12 * complete i2c transaction , followed by 1 or more bytes of data

13 *

14 * comment: jfarkas and cnoe discussion leads us to the decision to implement

15 * transferI2C separately from read/writeToSlave. the reason is that the cmd

16 * byte must be the first byte of the write transaction to the slave , followed

17 * immediately by the transaction data (if any). writeToSlave doesn ’t allow for

18 * this without two separate transactions , which won ’t work with our IPC.

19 *

20 * PARAMETERS:

21 * unsigned char addr

22 * Device address to write to

23 *

24 * unsigned char command

25 * Device command. Determines what is read/written

26 *

27 * RETURNS:

28 * 0 on success

29 * I2C error code otherwise

22

30 */

31 int transferI2C(unsigned char addr , unsigned char command)

32 {

33 unsigned char txLength , rxLength;

34 unsigned char i;

35 unsigned char *destBuffer;

36
37 // clear RX buffer

38 memset(i2cRxBuffer , 0x00 , IPC_BUF_MAX);

39
40 if (command & 0x80) {

41 txLength = payloadCommandTable[command & 0x7F][0];

42 } else {

43 txLength = commCommandTable[command][0];

44 }

45
46 // first , write the command + command data to the slave

47 if ((err = CP2_StartI2C ()) < 0) {

48 return err;

49 }

50
51 if ((err = CP2_WriteI2C(addr | I2C_WRITE)) < 0) {

52 CP2_StopI2C ();

53 return err;

54 }

55
56 if ((err = CP2_CheckAckI2C ()) < 0) {

57 CP2_StopI2C ();

58 return err;

59 }

60
61 if ((err = CP2_WriteI2C(command)) < 0) { // command byte

62 CP2_StopI2C ();

63 return err;

64 }

65
66 if ((err = CP2_CheckAckI2C ()) < 0) {

67 CP2_StopI2C ();

68 return err;

69 }

70
71 for (i = 0; i < txLength; i++) {

72 if ((err = CP2_WriteI2C(i2cTxBuffer[i])) < 0) {

73 CP2_StopI2C ();

74 return err;

75 }

76 // if(i=CP2_CheckAckI2C ())

77 // return i;

78 }

79 CP2_StopI2C ();

80
81 // read back

82 if ((err = CP2_StartI2C ()) < 0) {

83 CP2_StopI2C ();

84 return err;

85 }

86
87 if ((err = CP2_WriteI2C(addr | I2C_READ)) < 0) {

23

88 CP2_StopI2C ();

89 return err;

90 }

91
92 if ((err = CP2_CheckAckI2C ()) < 0) {

93 CP2_StopI2C ();

94 return err;

95 }

96
97 /* XXX: what happens if we issue a stop condition while the slave is still

98 * transferring? Will the slave pick up on the stop condition and stop , or

99 * will it keep trying to send data?

100 */

101 if (!(err = CP2_ReadI2C (& rxLength))) {

102 if (rxLength > 0 && rxLength <= IPC_BUF_MAX) {

103 if ((err = CP2_AckI2C ()) < 0) {

104 CP2_StopI2C ();

105 return err;

106 }

107
108 for (i = 0; i < rxLength; i++) {

109 if ((err = CP2_ReadI2C(i2cRxBuffer + i)) < 0) {

110 CP2_StopI2C ();

111 return err;

112 }

113
114 if (i != rxLength - 1) {

115 if ((err = CP2_AckI2C ()) < 0) {

116 CP2_StopI2C ();

117 return err;

118 }

119 }

120 }

121 }

122 } else {

123 CP2_StopI2C ();

124 return err;

125 }

126
127 CP2_NoAckI2C ();

128 CP2_StopI2C ();

129
130 return ERR_NONE;

131 }

B.2 Comm I2C ISR

Listing B.2: Old Comm I2C ISR frame
1 /**

2 * ISR for I2C address match.

3 */

4 #pragma interrupt i2cISR

5 void i2cISR(void)

6 {

7 static unsigned int idlectr; // I2C retry counter

8

24

9 static unsigned char i2cBufferIndex; // Index into current I2C buffer

10 static unsigned char i2cCommand; // Last I2C command recv ’d

11 static unsigned char commandReceived; // Have we received a command?

12
13 extern unsigned char commSensorSnapData [];

14
15 unsigned char i;

16 unsigned char data;

17
18 // Record that we ’ve received an i2c request

19 i2cActivityDetect = TRUE;

20
21 // Examine S, RW , DA and BF to determine I2C state

22 switch (SSPSTAT & 0x2D) {

23 // --

24 // State 1: Master Write , previous byte was address

25 // --

26 // S = 1, RW = 0, DA = 0, BF = 1

27 case I2C_STATE1:

28 i2cBufferIndex = 0; // Reset buffer index

29 i2cCommand = 0; // Reset last command

30 commandReceived = FALSE; // Reset cmd recvd

31 i = 0; // Reset loop iterator

32 data = SSPBUF; // Dummy read SSPBUF to clear BF

33 break;

34
35 // --

36 // State 2: Master Write , previous byte was data

37 // S = 1, RW = 0, DA = 1, BF = 1

38 // --

39 case I2C_STATE2:

40 // Store command byte separately from data

41 if (commandReceived) {

42 i2cRxBuffer[i2cBufferIndex ++] = SSPBUF;

43 } else {

44 commandReceived = TRUE; // Command received

45 i2cCommand = SSPBUF; // Store command

46 }

47 break;

48
49 // --

50 // State 3: Master Read , previous byte was address

51 // S = 1, RW = 1, DA = 0, BF = 0

52 // --

53 // Description: Return length of command data

54 // --

55 case I2C_STATE3:

56 switch (i2cCommand) {

57 case IPC_COMM_STATUS:

58 data = IPC_COMM_STATUS_RX_LENGTH;

59 break;

60
61 case IPC_COMM_SENSOR_SNAP:

62 i2cBufferIndex = 0;

63 data = IPC_COMM_SENSOR_SNAP_RX_LENGTH;

64 break;

65
66 case IPC_COMM_TX_DATA:

25

67 data = IPC_COMM_TX_DATA_RX_LENGTH;

68 break;

69
70 case IPC_COMM_TX_BEACON:

71 data = IPC_COMM_TX_BEACON_RX_LENGTH;

72 break;

73
74 case IPC_COMM_TX_PAYLOAD_DATA:

75 data = IPC_COMM_TX_PAYLOAD_DATA_RX_LENGTH;

76 break;

77
78 case IPC_COMM_TX_PAYLOAD_TEST:

79 data = IPC_COMM_TX_PAYLOAD_TEST_RX_LENGTH;

80 break;

81
82 case IPC_COMM_TX_RTC_TIME:

83 data = IPC_COMM_TX_RTC_TIME_RX_LENGTH;

84 break;

85
86 case IPC_COMM_GET_COMMAND:

87 i2cBufferIndex = 0;

88 data = 1 + uplinkCommand.len; // command + command data bytes

89 break;

90
91 case IPC_COMM_ACK_COMMAND:

92 data = IPC_COMM_ACK_COMMAND_RX_LENGTH;

93 break;

94
95 case IPC_COMM_NACK_COMMAND:

96 data = IPC_COMM_NACK_COMMAND_RX_LENGTH;

97 break;

98
99 case IPC_COMM_GET_TNC_MODE:

100 data = IPC_COMM_GET_TNC_MODE_RX_LENGTH;

101 break;

102
103 case IPC_COMM_TX_ADCS_DUMP:

104 data = IPC_COMM_TX_ADCS_DUMP_RX_LENGTH;

105 break;

106
107 case IPC_COMM_SET_TX_POWER:

108 data = IPC_COMM_SET_TX_POWER_RX_LENGTH;

109 break;

110
111
112 default:

113 data = 0;

114 break;

115 }

116
117 // wait for bufferfull to clear (= read complete)

118 for (idlectr = 0; idlectr < READ_RETRY; idlectr ++) {

119 if (! SSPSTATbits.BF)

120 break;

121 // XXX: what to do if buffer full hasn ’t cleared?

122 // only happens if master doesn ’t read

123 }

124

26

125 // we timed out waiting for bufferfull

126 if (idlectr == READ_RETRY) {

127 // XXX: reset state? pins?

128 // log error

129 }

130
131 SSPBUF = data; // Buffer next byte

132 break;

133
134 // --

135 // State 4: Master Read , previous byte was data

136 // S = 1, RW = 1, DA = 1, BF = 0

137 // --

138 case I2C_STATE4:

139 // Update current pin values

140 commStatus &= 0b00001111; // clear upper 4 bits

141 commStatus |= (SEL_TX_READ << 4);

142 commStatus |= (SEL_RX_READ << 5);

143 commStatus |= (SEL_RF_READ << 6);

144 commStatus |= (EN_PL_READ << 7);

145
146 // Return command data , if any

147 // all transmit commands set "not ready" until we transmit data currently in buffer

148 switch (i2cCommand) {

149 case IPC_COMM_TX_BEACON:

150 commTxFlags |= BEACON_WAITING;

151 data = commStatus;

152 commStatus &= ~COMM_STAT_READY;

153 break;

154
155 case IPC_COMM_TX_DATA:

156 commTxFlags |= CDH_DATA_WAITING;

157 data = commStatus;

158 commStatus &= ~COMM_STAT_READY;

159 break;

160
161 case IPC_COMM_TX_ADCS_DUMP:

162 commTxFlags |= ADCS_DUMP_WAITING;

163 data = commStatus;

164 commStatus &= ~COMM_STAT_READY;

165 break;

166
167 case IPC_COMM_TX_PAYLOAD_TEST:

168 commTxFlags |= PAYLOAD_TEST_WAITING;

169 data = commStatus;

170 commStatus &= ~COMM_STAT_READY;

171 break;

172 /*

173 case IPC_COMM_TX_PAYLOAD_DATA:

174 commTxFlags |= PAYLOAD_DATA_WAITING;

175 data = commStatus;

176 commStatus &= ~COMM_STAT_READY;

177 break;

178 */

179 case IPC_COMM_TX_RTC_TIME:

180 commTxFlags |= RTC_TIME_WAITING;

181 data = commStatus;

182 commStatus &= ~COMM_STAT_READY;

27

183 break;

184
185 case IPC_COMM_SET_TX_POWER:

186 cc1000TxPower = i2cRxBuffer [0];

187 commFlags |= UPDATE_TX_POWER;

188 data = commStatus;

189 break;

190
191 case IPC_COMM_ACK_COMMAND:

192 case IPC_COMM_NACK_COMMAND:

193 if (i2cCommand == IPC_COMM_ACK_COMMAND) {

194 commTxFlags |= ACK_WAITING;

195 } else {

196 commTxFlags |= NACK_WAITING;

197 }

198
199 commStatus &= ~COMM_STAT_CMD_RECVD; // clear command received status

200 COMM_INT = 0; // cdh has responded to our COMM_INT

201 data = commStatus;

202 commStatus &= ~COMM_STAT_READY;

203 break;

204
205 case IPC_COMM_STATUS:

206 data = commStatus;

207 break;

208
209 case IPC_COMM_SENSOR_SNAP:

210 data = commSensorSnapData[i2cBufferIndex];

211 i2cBufferIndex ++;

212 break;

213
214 case IPC_COMM_GET_COMMAND:

215 if (i2cBufferIndex == 0) {

216 data = uplinkCommand.command;

217 } else {

218 data = uplinkCommand.data[i2cBufferIndex - 1];

219 }

220
221 i2cBufferIndex ++;

222 break;

223
224
225 default:

226 i = 0;

227 break;

228 }

229
230 // wait for bufferfull to clear (= read complete)

231 for (idlectr = 0; idlectr < READ_RETRY; idlectr ++) {

232 if (! SSPSTATbits.BF) {

233 break;

234 }

235 // XXX: what to do if buffer full hasn ’t cleared

236 // only happens if master doesn ’t read

237 }

238
239 // we timed out waiting for bufferfull

240 if (idlectr == READ_RETRY) {

28

241 // XXX: reset state? pins?

242 // log error

243 }

244
245 SSPBUF = data; // Buffer next byte

246 break;

247
248 // --

249 // State 5: Master NACK

250 // S = 1, RW = 0, DA = 1, BF = 0

251 // --

252 case I2C_STATE5:

253 // Post command cleanup

254 i2cCommand = 0; // Reset command

255 commandReceived = 0; // Reset cmd recvd

256 i2cBufferIndex = 0; // Reset index

257 i = 0; // Reset loop iterator

258 break;

259 }

260
261
262 // Release SCL to free the bus

263 SSPCON1bits.CKP = 1;

264
265 // Clear interrupt flag

266 PIR1bits.SSPIF = 0;

267 }

268
269 #pragma code

29

Bibliography

[1] Cubesat Specification. Available at http://cubesat.atl.calpoly.edu/media/CDS rev10.pdf.

[2] Noe, Chris. “Design and Implementation of the Communications Subsystem for the
Cal Poly CP2 Cubesat Project“ Cal Poly Senior Project.

[3] Farkas, Jacob. “CPX: Design of a Standard Cubesat Sotware Bus“ Cal Poly Senior
Project.

[4] A. Leon-Garcia and I. Widjaja, “Communication Networks: Fundamental Concepts
and Key Architectures“ New York: McGraw-Hill, 2004.

[5] PIC18FXX20 Data Sheet. Available at http://www.microchip.com.

30

http://cubesat.atl.calpoly.edu/media/CDS_rev10.pdf
http://www.microchip.com

	Introduction
	CubeSat Project Introduction
	CubeSats Developed at Cal Poly
	CP1
	CP2/CP4
	CP3

	CPX I2C Bus
	Interprocessor Communication
	Master
	Slave

	Problems
	On-Orbit Performance

	Modifications
	Changes
	One Message, One Transaction
	Error Detection
	Redesigned API

	System Impacts
	How To Add Commands
	IPC Commands & TNC Packet Types

	Future Work
	On Orbit Characterization
	Uploadable Code
	Arbitrary Interface for Modifying Parameters

	Acknowledgements
	Source Code Excerpts
	transferI2C()
	Comm I2C ISR

