
CPX: Design of a Standard Cubesat Software Bus

Jacob Farkas
California Polytechnic State University, San Luis Obispo

June 15, 2005

Abstract

The Cubesat standard brings the possibility of building a satellite within reach of under-
graduate students. Cubesats can be built with cheap, commercial off the shelf products,
and allow for a rapid development time. With the P-Pod launcher and the services of the
Cubesat group at Cal Poly, Cubesat launches are within the budget of most University
projects. A standard communication and command and data handling system allows for
faster development of more complicated satellites, as all of the effort can be focused on
creating complex payloads. Rather than focusing their energy on ensuring that the basic
satellite functionality is operational, developers can build payloads to test and demonstrate
experiments that could not otherwise be performed on Earth. This paper describes a stan-
dard software system for the CPX bus system that provides communication with an Earth
station, sensor data collection, command and control of the satellite, and an adaptable
payload interface.

Contents

1 Introduction 3
1.1 Project History . 3

1.1.1 Cubesat . 3
1.1.2 CP1 . 4
1.1.3 CP2 . 5

2 The CP2 Bus 6
2.1 Specifications . 6
2.2 CP2 Features . 7

2.2.1 I2C . 7
2.2.2 Attitude Determination and Control 7

3 Design 9
3.0.3 Module Upgrades . 9
3.0.4 I2C Communication Interface . 9
3.0.5 Documented interprocessor communication and command interface . 9

4 Implementation 10
4.1 Real Time Clock . 10
4.2 Battery Monitor . 11

4.2.1 I2C Library . 14
4.2.2 How to add a command . 16

5 Future Work 19
5.0.3 Peak Power Tracking . 19
5.0.4 Software Checksum . 20
5.0.5 Bootloader . 20
5.0.6 Contingency Mode . 20

6 Acknowledgments 21

1

7 Source Code 22
7.1 Battery Monitor . 22
7.2 Battery Monitor . 26
7.3 Real Time Clock . 28
7.4 Real Time Clock . 43
7.5 Real Time Clock Structure . 45
7.6 I2C Library . 48
7.7 I2C Library . 52
7.8 I2C Slave Code . 65

2

Chapter 1

Introduction

A requirement for practically any satellite is the ability to collect basic operational data
and communicate that data with an earth based communication station. A standard
Cubesat bus will collect system sensor data, provide command and communication uplink
and downlink to the earth station, and provide an interface to one or more payloads. The
bus software must be easily adaptable to meet the requirements of different payloads. The
CPX bus will speed the development of student-built Cubesats by providing a base system
upon which to build more complex satellites.

1.1 Project History

1.1.1 Cubesat

Figure 1.1: P-POD Mk. I

In 1998, Dr. Jordi Puig-Suari started a satellite design class at Cal Poly. His plan
was to create a student-built small satellite. Stanford already had a small satellite group
in existence at their Space Systems Development Laboratory working on a picosatellite

3

named OPAL. Dr. Bob Twiggs of Stanford decided to develop a picosatellite standard
based on the size of a beanie baby box. Cal Poly worked with Stanford to develop the
P-Pod deployer to carry multiple cubesats into space.

In 2001 the cubesat standard was released[1] and Cal Poly built the first revision of the
P-Pod. The Cal Poly Cubesat team decided to build a cubesat of their own to learn about
the issues other satellite developers were encountering in building to the cubesat standard.

In 2003, the first test of the P-Pod and the cubesat standard came when 3 cubesats
were launched in June 2003 by Eurockot Launch Services. 14 cubesats in 5 P-Pods are
scheduled to launch in late 2005[5].

1.1.2 CP1

Cal Poly’s first satellite, CP1, was built so that the Cal Poly cubesat group could under-
stand the issues that cubesat developers were facing in building cubesats for the P-Pod.
The CP1 core team was comprised of seven Cal Poly students from aerospace and electrical
engineering. The software was written without the input of any experienced programmers.
CP1 is scheduled to launch on the 2005 DNEPR cubesat launch.

Figure 1.2: CP1: Cal Poly’s First Satellite

Specifications

CP1’s main bus used a single Netmedia BasicX-24 module for control[2]. The processor
runs at 8mhz and contains 400 bytes of RAM and 32kB of EEPROM storage. An Alinco
DJ-C5T radio was disassembled and used as the communication board for the satellite. CP1
contains two payloads: an Optical Electronics Technology sun sensor, and a mangetorquer
built by Cal Poly students.

4

1.1.3 CP2

A new team was formed at Cal Poly dedicated solely to building Cubesats. The Polysat
project was composed of many of the members of the original CP1 team. CP2 is Polysat’s
effort to create a satellite with a standardized bus that can be used on future cubesats. The
power board and communication systems were designed from scratch by Cal Poly students,
which required considerable effort. The structure was also designed and manufactured
entirely by Cal Poly students. CP2 also marks the first Cal Poly satellite with a dedicated
software team, and the software is written in embedded C rather than BASIC. The payload
on CP2 was purchased by an external customer. Payload specifications were provided to the
Polysat CP2 team and the payload was built by Cal Poly students to meet the customer’s
specifications. CP2 is scheduled to launch the 2005 DNEPR cubesat launch along with
CP1.

Figure 1.3: CP2: Cal Poly’s Second Satellite

The major difference between the design and construction of CP1 and CP2 is the
multidisciplinary approach of CP2. Students from a variety of engineering majors worked
together to produce parts of the satellite. CP1 was built almost entirely by aerospace
engineering majors.

5

Chapter 2

The CP2 Bus

The majority of the CP2 bus code was written by Chris Noe. Preliminary code was also
written by Matt Kaiser, but most of it was not used in the flight satellite. Chris deserves
a great deal of credit for the work he put into the CP2 C&DH and Comm system. For a
very in-depth analysis of the CP2 comm system, see Chris’ senior project[3]

The CP2 bus will serve as the model for the CPX bus. A major benefit of the CP2 bus
is its onboard communications components, designed from scratch and laid out on board
rather than using a gutted ham radio. The communications subsystem software developed
by Chris Noe[3] is a valuable asset to the CP2 bus. The power board, developed by Chris
Day[4] provides power to the CP2 bus, side panels, and payload. The power board couples
with the command and data handling board and provides connections between all of the
satellite’s boards.

Some problems were encountered in the design and development of the CP2 bus that
must be resolved before the bus can become a standard base system for future Cubesats.
The largest problems are electrical layout mistakes, which can be expected in any complex
board design, and will be fixed in the next revision of the boards. Some software features
have been left out due to pressing deadlines, and the interprocessor communication interface
is specialized for CP2.

2.1 Specifications

The CP2 bus was designed with three PIC18F6720 microprocessors; one command and
data handling (C&DH) processor, and a redundant pair of communication processors.
Communication to the payload, side panels, and between the C&DH and comm processors
is done through the two wire I2C bus. The communication system was developed using
Chipcon CC1000 transceivers[3]. CP2 can communicate to an earth station with a 1200bps
downlink and a 600bps uplink speed. For attitude determination and conrol, magnetorquers
and HMC1052 2-axis magnetic sensors are built into the side panels of CP2.

6

The power board has two 4.2V lithium-ion batteries that provide a regulated 3V supply
to the CP2 bus and side panels and an unregulated supply to the payload. The power
board charges from solar panels on the side boards and has circuitry in place for peak
power tracking.

2.2 CP2 Features

2.2.1 I2C

A board design issue was encountered with the I2C bus. I2C is a serial protocol developed
by Phillips that is used extensively on CP2 for communication between components. When
the custom built boards came back from the manufacturer, the I2C lines had a large amount
of capacitance on them, resulting in sawtooth signals rather than square waves. This was
unexpected, as we saw perfect square waves when we connected all of the parts on proto
boards. Adding a Phillips P82B715 I2C bus extender improved the signal a bit, but the
signal was still far from a square wave. The signal was good enough that all of the I2C
devices could send and receive on the bus.

(a) (b)

Figure 2.1: (a) I2C bus capacitance, (b) improved I2C bus signal

Members of the EE team discovered that MOSFETs put in place to prevent a device
from locking up and pulling the I2C line low were causing the capacitance on the line.
These MOSFETs were unnecessary because there is already enough protection built into
the bus to avoid such a failure. After removing the unnecessary MOSFETs the I2C bus
signal became much cleaner.

2.2.2 Attitude Determination and Control

Aerospace majors involved in the Polysat project have worked at characterizing the mag-
netometers on the CP2 side panels in order to create an attitude determination and control
(ADC) algorithm to detumble the satellite. The algorithm they chose to implement is the

7

B-Dot algorithm. The goal of the algorithm is to pulse the magnetorquers at the appro-
priate times to interact with the Earth’s magnetic field and stabilize the satellite. Precise

Figure 2.2: Magnetorquer traces in the CP2 side panels

positioning is not available with this algorithm, but ADC is a difficult problem to solve
and not much work is done with ADC at the undergraduate level. The magnetorquers are
an experimental idea for CP2; the torquers are constructed from coils of traces laid out in
the four inside layers of the six layer boards used to make the side panels. By powering
these coils with a pulse width modulated signal, the torquers should react with the Earth’s
magnetic field and move the satellite.

B-Dot has been implemented on CP2 by Kyle Leveque. Once CP2 is in orbit, data will
be collected on its effectiveness.

8

Chapter 3

Design

3.0.3 Module Upgrades

The real time clock changed from CP2 to CPX. The chips are both made by the same
manufacturer and use the same core, so upgrading the module for the new chip should
not require much work. The existing battery monitor code is poorly written and is not
adaptable. Many times during the CP2 project we wanted to improve the code but a
rewrite would take too long and the existing code worked. Most of the old battery monitor
code was written in inline assembly and is nonintuitive. The battery monitor code needs
to be improved to be adaptable to pin changes, as the pins have changed between the CP2
and CPX bus and it is possible they will change in the future. A rewrite using C code or
at least a cleaner interface to inline assembly is desired.

3.0.4 I2C Communication Interface

The PIC18F6720 chips used on the satellite contain a hardware I2C implementation. The
Microchip C18 compiler libraries contain functions to interface with the hardware I2C, but
the library software is not suitable for mission critical flight software. The C18 I2C libraries
contain the potential for infinite loops and do not consistently report error messages. A
rewrite of the libraries should take into account that the I2C could be stuck low and allow
for the satellite to continue functioning without I2C. Error handling should be built into
the new functions so that errors can be logged and reported to earth.

3.0.5 Documented interprocessor communication and command inter-
face

Chris Noe developed a robust interprocessor communication and command system for CP2,
but there is not much documentation provided aside from some comments in the code and
the examples given by existing code. In this paper I will document the IPC and command
interface and detail how to add a new command to the satellite.

9

Chapter 4

Implementation

4.1 Real Time Clock

A temperature compensated real time clock was added to the revision 3 board design of
the CPX bus. The DS3231 chip provides a temperature compensated crystal, battery, and
real time clock in one package. The chip interfaces with the C&DH processor through
I2C and provides timing accurate to approximately ±3.5 parts per million. Our previous

Figure 4.1: Frequency drift of CP2’s RTC

real time clock, a DS1339, was located on the payload board and used an external crystal
that provided a base of ±20ppm accuracy that drifted with temperature. This real time
clock can be expected to drift one second in half a day, and with extreme temperature
variations in orbit it is likely that it drifts much more than that. A real time clock with a
temperature compensated oscillator will drift one second in approximately five days. We
need the temperature compensated oscillator to provide accurate timing for test runs or
orbit determination. The DS3231 uses an internal temperature sensor and a capacitance
array to compensate for the crystal’s change in oscillation.

A concern in cubesat design is size, and although the DS3231 is a relatively small IC,
it is very large in comparison with the rest of the chips on the CPX bus. When selecting

10

a new RTC for the satellite I did not take the size of the chip into consideration and was
a bit surprised when I received samples of the chip. This is one of those experiences that
is unique to a cubesat project compared to a full-sized satellite.

The DS3231 core is based on the DS1339, which made the transition very easy. I only
needed to add a few extra registers to my code for the DS1339 and write a new function
to access those registers. Since the DS3231 must use a temperature sensor internally to
compensate for temperature effects on the crystal, it makes the temperature sensor available
externally, so we get an extra temperature sensor on the satellite by upgrading the real
time clock.

4.2 Battery Monitor

The CPX bus uses the Dallas DS2761 battery monitor chips to monitor and protect the
onboard Li-Ion batteries. The battery monitor chips are commanded through the Dallas
1-Wire bus, which posed an interesting challenge. Communicating over a single wire means
that the protocol is very time critical. The CPX bus uses PIC18 chips running at 4 MHz
and the processor requires four cycles per instruction, so the satellite processors perform
one million instructions per second, or one instruction every 1µs. The minimum timing on
the one wire bus is 15µs, so the processor should be able to communicate on the one wire
bus.

The CP2 code contained an existing implementation of a DS2761 battery monitor
module, but the code is very disorganized and difficult to update if pins change. My goal
was to create a layer of abstraction for the battery monitor chips so the functions would
not have any code limited by the pins a battery monitor was on or the number of battery
monitors that were connected. To communicate with the battery monitors I needed to
change tristate pins to input or output and read and write to those pins. Reading a bit,
for example, requires changing the pin to an input, reading the pin, and shifting it in to a
variable. There is a window for each bit read or written that is at maximum 120µs. For
special cases, such as reading a one, the maximum timing is 15µs. Abstracting the battery
monitors from their actual pins involves extra processing overhead which takes us over or
very close to the maximum timing requirements. Ultimately I had to make a compromise
between abstraction and speed.

My first approach to rewriting the battery monitor code was to create a battery monitor
handler struct which contained pointers to functions that would manipulate the pin for an
individual battery monitor. This would encapsulate an external battery monitor as a struct
that could be passed between functions to read and write from the battery monitor. I coded
this solution and ran timing tests on it. I discovered that dereferencing the various pointers
involved drove the time up to around 30µs for a single function call.

11

Listing 4.1: Function Call Design
struct batteryHandler {

void (*io)(uchar);

uchar (*in)(void);

void (*out)(uchar);

};

typedef struct batteryHandler batHandler;

// pin access functions , pointed to by function pointers in batHandler struct

void batAIO(uchar io) { TRISBbits.TRISB0=io; }

uchar batAin(void) { return PORTBbits.RB0; }

void batAout(uchar out) { LATBbits.LATB0=out; }

void batBIO(uchar io) { TRISBbits.TRISB1=io; }

uchar batBin(void) { return PORTBbits.RB1; }

void batBout(uchar out) { LATBbits.LATB1=out; }

// battery handler structs. reference the access functions above

batHandler batA = {batAIO , batAin , batAout},

batB = {batBIO , batBin , batBout };

My next approach was to use macros that manipulated the pins for a battery monitor
depending on a parameter that is passed in. The macros were a bit more efficient since
they didn’t require dereferencing pointers, but the way in which they compiled down to
assembly instructions was indeterminate and there was the potential for timing issues to
arise. The macro design had an average timing of 4µs for each call (switching the state of
a tristate port, writing to a port, or reading from a port), meaning that the code would
just barely meet the 15µs timing requirement for reading on the one wire bus. This was
not good enough though because it was not a guaranteed time, only an approximate given
testing of the individual macros.

(a) (b) (c)

Figure 4.2: Battery monitor timings for (a) function call, (b) macro, (c) inline assembly

12

Listing 4.2: Macro Design
#define BAT_A 0x01

#define BAT_B 0x02

#define BAT_TRIS TRISB

#define BAT_LAT LATB

#define BAT_PORT PORTB

#define BAT_SET_OUTPUT(bat) (BAT_TRIS = BAT_TRIS & (~bat))

#define BAT_SET_INPUT(bat) (BAT_TRIS = BAT_TRIS | bat)

#define BAT_PIN_READ(bat) (BAT_PORT & bat)

#define BAT_PIN_HIGH(bat) (BAT_LAT = BAT_LAT | bat)

#define BAT_PIN_LOW(bat) (BAT_LAT = BAT_LAT & (~bat))

The macros were changed to use inline assembly so that the timing of each line in the
timing critical sections could be determined exactly. This approach to writing the battery
monitor code resolved the timing issues, but resulted in code that is a bit less clean that
desired. The benefit is that an instruction for setting a port as an output now takes only
1µs instead of 30µs. The drawback is that the code assumes there will be only two battery
monitors and there are different inline assembly macros for each battery monitor. This
assumption seemed to be safe to make because the power board is only designed to handle
two batteries. Adding more batteries would require a considerable redesign of the bus
system.

Listing 4.3: Inline Assembly Macro Design
#define BAT_A 0x01

#define BAT_B 0x02

#define BAT_TRIS TRISB

#define BAT_LAT LATB

#define BAT_PORT PORTB

#define BAT_A_SET_OUTPUT _asm BCF BAT_TRIS , 0, 0 _endasm

#define BAT_A_SET_INPUT _asm BSF BAT_TRIS , 0, 0 _endasm

#define BAT_A_OUTPUT_HIGH _asm BSF BAT_LAT , 0, 0 _endasm

#define BAT_A_OUTPUT_LOW _asm BCF BAT_LAT , 0, 0 _endasm

#define BAT_B_SET_OUTPUT _asm BCF BAT_TRIS , 1, 0 _endasm

#define BAT_B_SET_INPUT _asm BSF BAT_TRIS , 1, 0 _endasm

#define BAT_B_OUTPUT_HIGH _asm BSF BAT_LAT , 1, 0 _endasm

#define BAT_B_OUTPUT_LOW _asm BCF BAT_LAT , 1, 0 _endasm

#define BAT_PIN_READ(bat) (BAT_PORT & bat) // ~4us

Although the rewrite turned out not to be possible in pure C, the code has been cleaned
up a great deal. The macros around inline assembly code makes the code easier to read
and understand. The nature of the assembly code was also changed a bit. Using different
assembly commands I was able to perform the necessary pin manipulation functions in half
the time of the old code.

13

4.2.1 I2C Library

The I2C library provided with the MC18 compiler had a flaw that could cause a potentially
serious problem on a satellite. The I2C libraries use busy waiting on the I2C register to
avoid bus collisions. The problem with this is that if one device locks up and holds the
I2C line low, the processors will end up stuck forever polling the I2C line. Fortunately the
watchdog timers will reset the processors after 2 minutes, but the processors will lock up
not long after they reset when they try and access the I2C line again. If the processors can
not communicate on the I2C bus the system is not of much use, since data can not flow
from the C&DH processor to the comm processor and out to the earth station. It is still
critical for the processor to remain running in the event of an I2C failure. Many of the
devices do not rely on I2C and a good amount of data can still be collected and logged.
In future satellites it may be necessary to have attitude control and determination always
running, and if the processor was hung up on an I2C failure it would not be able to achieve
this.

I rewrote the MC18 I2C libraries to be more robust. The functions use a for loop
instead of a while loop and time out after a specified number of retries. I also added a
small delay between retries so the processor did not retry too many times within a short
period of time and then give up. The MC18 library required a call to IdleI2C() before
almost every other I2C library call to ensure that the bus was free before attempting to
use it. This was an inconvenience to the programmer and also created repetitive code, so
I rolled the IdleI2C() function into my version of the libraries where needed.

Listing 4.4: Example of writing bytes to a device using MC18 libraries.
OpenI2C(MASTER , SLEW_ON);

IdleI2C ();

StartI2C ();

IdleI2C ();

if(PIR2bits.BCLIF)

return(ERR_BUSCOL);

/* send the device address */

if(WriteI2C(address))

return(ERR_WRITE);

IdleI2C ();

if(SSPCON2bits.ACKSTAT)

return(ERR_NOACK);

/* send the data memory address to the device */

if(WriteI2C(msb_addr))

return(ERR_WRITE);

IdleI2C ();

if(SSPCON2bits.ACKSTAT)

return(ERR_NOACK);

if(WriteI2C(lsb_addr))

return(ERR_WRITE);

IdleI2C ();

14

if(SSPCON2bits.ACKSTAT)

return(ERR_NOACK);

/* write the bytes in the array to the device */

for(i=0;i<len && i<MAX_WRITE;i++) {

if(WriteI2C (*(data+i)))

return(ERR_WRITE);

IdleI2C ();

if(SSPCON2bits.ACKSTAT)

return(ERR_NOACK);

}

StopI2C ();

There were common sequences in the I2C communication with slave devices. Com-
municating to a device using the MC18 libraries required the programmer to remember a
sequence of library calls to set up the connection, talk to the device, and close the connec-
tion. These steps were the same no matter which chip you were talking to, again creating
repetitive code. An example of this code can be seen in listing 4.4. I combined the reading
and writing sequences into single read and write functions, as shown in figure 4.5, greatly
simplifying the process of reading and writing to slave devices over I2C.

Listing 4.5: New library functions.
char writeToSlave(unsigned char address , unsigned char data[], int dataLength)

{

int index;

if ((err = CP2_StartI2C ()) < 0) {

return err;

}

if ((err = CP2_WriteI2C(address | I2C_WRITE)) < 0) {

CP2_StopI2C ();

return err;

}

if ((err = CP2_CheckAckI2C ()) < 0) {

CP2_StopI2C ();

return err;

}

for (index = 0; index < dataLength; index ++) {

if ((err = CP2_WriteI2C(data[index])) < 0) {

CP2_StopI2C ();

return err;

}

}

CP2_StopI2C ();

return err;

}

15

4.2.2 How to add a command

One of the most common modifications to the CPX bus code will be the addition of
new commands, both from the earth station and between processors. Since the command
must flow from the comm processor to the C&DH processor and possibly to the payload
processor, multiple files must be edited to handle a new command.

In this example I will outline the changes necessary to add a command for rotating the
satellite around a given axis. The first step we need to take is to define the amount of data
we expect to transmit to the satellite and between the processors. Currently the largest
command allowed is 30 bytes. This limit was added in to conserve memory and to provide
a simple sanity check on incoming commands. If you wish to have a longer command you
must change the macro COMMAND BUFFER SIZE in shared/cp2-commands.h. In our case
we will use a 16 bit number for the angle to rotate to and a 2 bit variable for the axis of
rotation. Padding the bits out we end up with a 3 byte command.

We now need to add the command to the commands file so that it is recognized as a valid
command. Edit shared/cp2-commands.h and add the command under the appropriate
section. This command will run on the payload processor, so we add it under the last
payload command listed in the file. Add the line at the bottom of listing 4.6.

Listing 4.6: Adding the new command to cp2-commands.h.
52 #define CMD_PAYLOAD_ADCS_SNAP 0x85

53 #define CMD_PAYLOAD_ROTATE 0x86

Now the comm code must be changed to recognize the new command as a valid com-
mand. The validation is done in a switch statement in comm/comm-main.c. Add line 405
as shown in listing 4.7.

Listing 4.7: Adding the new command to comm-main.c.
403 case CMD_PAYLOAD_GET_ADCS_SNAP:

404 case CMD_PAYLOAD_DUMP_ADCS_DATA:

405 case CMD_PAYLOAD_ROTATE:

406 commStatus |= COMM_STAT_CMD_RECVD;

407 COMM_INT = 1; // let CDH know we have a command

408 break;

Upon receiving command 0x8A, the comm processor will recognize it as a valid command
and store it until C&DH polls it. When C&DH polls comm it will get the command and
store the command data in the commandData buffer. The C&DH processor must then pass
the data on to the payload processor. The interprocessor communication for the rotate
command must be set up. First, the length of the data to be transferred to and from the
payload processor must be defined in cp2-i2c.h. The TX size is the amount of data to be
transferred from the C&DH processor to the slave processor. The RX length is the amount
of data to be subsequently read from the slave processor.

16

Listing 4.8: Adding the new command to cp2-i2c.h.
403 #define IPC_PAYLOAD_ADCS_SNAP 0x85

404 #define IPC_PAYLOAD_ADCS_SNAP_TX 0

405 #define IPC_PAYLOAD_ADCS_SNAP_RX 5

406
407 #define IPC_PAYLOAD_ROTATE 0x86

408 #define IPC_PAYLOAD_ROTATE_TX 3

409 #define IPC_PAYLOAD_ROTATE_RX 0

If there is data transmitted in either the transmit or receive of the interprocessor com-
munication, the TX and RX lengths defined above must be entered in the command table.
The entries must be made in the position in the command table corresponding to their
command number relative to the first command for that processor. For this example the
first command for the payload processor is 0x80 and this command is 0x86, so it should
occupy the 6th entry in the command table. Be sure to increment the command count for
the command table you are adding the command to.

Listing 4.9: Adding the new command to cp2-i2c.c.
25 // this table maps commands to their expected TX/RX lengths

26 #define IPC_COMM_COMMAND_COUNT 13

27 #define IPC_PAYLOAD_COMMAND_COUNT 7

28 #define IPC_COMMAND_TABLE_WIDTH 2

29
30 unsigned char

31 payloadCommandTable[IPC_PAYLOAD_COMMAND_COUNT][IPC_COMMAND_TABLE_WIDTH] = {

32 {IPC_PAYLOAD_STATUS_SIZE_TX , IPC_PAYLOAD_STATUS_SIZE_RX},

33 {IPC_PAYLOAD_SENSOR_SNAP_SIZE_TX , IPC_PAYLOAD_SENSOR_SNAP_SIZE_RX},

34 {IPC_PAYLOAD_TEST_SNAP_SIZE_TX , IPC_PAYLOAD_TEST_SNAP_SIZE_RX},

35 {IPC_PAYLOAD_NEW_TEST_SIZE_TX , IPC_PAYLOAD_NEW_TEST_SIZE_RX},

36 {IPC_PAYLOAD_GET_TEST_SIZE_TX , IPC_PAYLOAD_GET_TEST_SIZE_RX},

37 {IPC_PAYLOAD_ADCS_SNAP_TX , IPC_PAYLOAD_ADCS_SNAP_RX}

38 {IPC_PAYLOAD_ROTATE_TX , IPC_PAYLOAD_ROTATE_RX}

39 };

A new state must be added to the C&DH code in order for C&DH to process the com-
mand. This state will handle passing the command data to the payload controller and doing
any necessary work on C&DH’s side. You must add a new case for the CMD PAYLOAD ROTATE
command in the switch statement in executeCommand(). In listing 4.10, the case has been
added at the end of the switch statement, right before the default case.

Listing 4.10: Adding the new command to cdh-main.c.
403 case CMD_PAYLOAD_ROTATE:

404 if(cdhCurrentState == NORMAL_OPS) {

405 commandAck ();

406
407 //put the command data into the i2c transmit buffer

408 memcpy ((void*) i2cTxBuffer , (void *)& commandData , CMD_DATA_LENGTH);

409 if((err = transferI2C(PIC_PAYLOAD , IPC_PAYLOAD_ROTATE)) < 0) {

410 logError(ERR_I2C_PAYLOAD);

411 }

412 } else {

17

413 commandNack ();

414 }

415 break;

416
417 /* bad command */

418 default:

419 commandNack ();

420 break;

421 }

To transmit data over the IPC interface, fill the i2cTxBuffer array with the data you
wish to send and call transferI2C to perform the transfer. transferI2C uses the com-
mand table to perform the sending and receiving of data between the processors, sending
data of length IPC PAYLOAD ROTATE TX from i2cTxBuffer and reading IPC PAYLOAD ROTATE RX
bytes of data into the i2cRxBuffer array.

The payload code uses a state machine as the interrupt handler for I2C. A sample of
the code can be found in the appendix, listing 7.8.

18

Chapter 5

Future Work

5.0.3 Peak Power Tracking

Solar panel voltage and current levels vary as their temperature changes. In orbit the
temperatures of the side panels will fluctuate as the sides face the sun or are hidden from
the sun in the Earth’s eclipse. In our design, a digital potentiometer is connected across
each solar panel, and by varying the resistance of the digipot the voltage and current levels
of the side panel can be altered. In theory, the power output of a solar panel should follow
a parabolic curve for different digipot levels. By sweeping the digipot through its settings,
a peak can be found, and by varying the digipot slightly every update and recording the
power output it should be possible to find and track the peak power.

In practice it is not so simple. A peak power tracking scenario was never satisfactorily
set up by the electrical engineering student that designed the peak power tracking circuitry,
and testing peak power tracking software was difficult to test. Varying the digipot levels
often seemed to have little to no effect on either the voltage or the current, and attempts
by the software team to connect physical measuring devices resulted in fried components.
The solar panel voltage and current readings were far too noisy to read any useful data
from, and when they were filtered out their latency was too great for the software to
appropriately respond to. We could not get the electrical engineering student to help us
test the circuitry, and due to a proper knowledge of the system, peak power tracking was
shelved for a future satellite.

Peak power tracking is difficult to characterize. The angle of incidence of sunlight, the
intensity of the sunlight, the temperature of the solar panel, the battery voltage, and the
digipot setting all affect the solar panel voltage and current. It is difficult to narrow the
variables to only one or two of these factors across multiple tests to verify that peak power
tracking is performing better than a static solar panel. There is also the problem of the
digipot getting stuck on a high or low level while in eclipse to the point where sunlight on
the panels is not sensed.

Peak power tracking would be a nice addition to the CPX bus, but there are doubts

19

as to the amount of benefit it would provide compared to the amount of work required to
implement.

5.0.4 Software Checksum

When performing the final programmings of the satellite it was hard to keep track of
what changes were made to the code and what satellite had which version of the code
programmed on it. A checksum command would help determine what version of code was
programmed on a satellite without having to connect the satellite to a debugger.

5.0.5 Bootloader

A bootloader will allow reprogramming of the processors through a serial interface using
a small program on the PC, rather than through the programming lines and using the
Microchip MPLAB IDE. This could allow for more processors to be accessed through the
CP2 bus, since only two lines would be needed for each processor.

The bootloader could also use the checksum routine during processor startup. If the
code in memory does not match the checksum, a copy of the code could be loaded from
the onboard flash EEPROM memory. This would fix any errors possibly introduced in the
code by radiation in space.

An implementation of a serial bootloader is not currently possible, as the boards for
CP2 do not have serial lines exposed to the umbilical box. Revision 3 of the C&DH board
has RS232 lines on the umbilical. As of the time of writing, revision 3 boards are still
unavailable.

5.0.6 Contingency Mode

The electrical design for CP2 included a contingency mode, in which one of the comm
processors would take over for the C&DH processor and communicate directly with the
payload processor. Contingency mode was not implemented in the CPX software, although
the hardware is in place for allow it. Dealing with multiple masters on the I2C bus creates
many concurrency problems, and there is no easy way to resolve bus contention with the
PIC I2C libraries we are using.

20

Chapter 6

Acknowledgments

• Chris Noe for his work on developing the original CP2 bus system

• Kyle Leveque for the long nights of coding and arguing about do/while loops

• All of the Polysat and Cubesat team members for making the lab a great place to
work in

• Dr. Jordi Puig-Suari for letting us hang out on his roof

• Dr. Clark Savage Turner for his assistance and advice

21

Chapter 7

Source Code

7.1 Battery Monitor

#include "cdh -batmon.h"

#undef BATMON_UNITTEST

5 #ifdef BATMON_UNITTEST

void main(void) {

struct BatteryMonitorData data;

char status;

10
ResetBatteryMonitor(BAT_A);

ResetBatteryMonitor(BAT_B);

while (1) {

15 status=BatteryMonitorRead (&data , BAT_A);

status=BatteryMonitorRead (&data , BAT_B);

}

}

#endif

20
// resets the protection register flags and clears the current accumulation register

// returns:

// -1 if the batmon is not responding

// 0 otherwise

25 char ResetBatteryMonitor(char bat) {

/* write PROT reg */

if(BatmonWriteReg(REG_PROT , bat)) {

return -1;

}

30 // clear all protection register flags except charge and discharge enable

WriteByte1Wire (0x03 , bat);

/* zero out accumulated current reg */

if(BatmonWriteReg(REG_ACC_CUR_MSB , bat)) {

35 return -1;

}

22

WriteByte1Wire (0, bat);

WriteByte1Wire (0, bat);

40 return 0;

}

// fills the BatteryMonitorData struct with battery monitor data

// returns

45 // -1 if the batmon is not responding

// 0 otherwise

char BatteryMonitorRead(struct BatteryMonitorData *batmon , uchar bat) {

char curMSB=0, curLSB =0;

memset(batmon , 0x00 , sizeof(struct BatteryMonitorData));

50
if(BatmonReadReg(REG_PROT , bat)) {

return -1;

}

batmon ->protection=ReadByte1Wire(bat);

55 batmon ->status=ReadByte1Wire(bat);

if(BatmonReadReg(REG_VOLT_MSB , bat)) {

return -1;

}

60 batmon ->voltage=ReadByte1Wire(bat);

// throw away LSB of voltage

ReadByte1Wire(bat);

curMSB = ReadByte1Wire(bat);

65 curLSB = ReadByte1Wire(bat);

batmon ->current=curMSB;

batmon ->current <<= 8;

batmon ->current |= curLSB;

batmon ->current >>= 3;

70 // sign extension doesn ’t work for that previous shift. wtf?

if(curMSB & 0x80) {

batmon ->current |= 0xE000;

}

75 curMSB = ReadByte1Wire(bat);

curLSB = ReadByte1Wire(bat);

batmon ->accumCurrent =((int)curMSB)<<8;

batmon ->accumCurrent |= curLSB;

80 if(BatmonReadReg(REG_TEMP_MSB , bat)) {

return -1;

}

batmon ->temperature=ReadByte1Wire(bat);

85 return 0;

}

// sets up bus for reading from a register. call this function then perform reads and needed.

// returns:

90 // -1 if the batmon is not responding

// 0 otherwise

char BatmonReadReg(uchar reg , uchar bat) {

if(Reset1WireBus(bat))

return -1;

23

95 WriteByte1Wire(SKIP_NET_ADD , bat);

WriteByte1Wire(READ_FUNCTION , bat);

WriteByte1Wire(reg , bat);

return 0;

}

100
// sets up bus for writing to a register. call this function then perform writes as needed.

// returns:

// -1 if the batmon is not responding

// 0 otherwise

105 char BatmonWriteReg(uchar reg , uchar bat) {

if(Reset1WireBus(bat))

return -1;

WriteByte1Wire(SKIP_NET_ADD , bat);

WriteByte1Wire(WRITE_FUNCTION , bat);

110 WriteByte1Wire(reg , bat);

return 0;

}

void ReadBytes1Wire(uchar *outbytes , uchar len , char bat) {

115 uchar *data;

for(data=outbytes; data <outbytes+len; data ++) {

*data=ReadByte1Wire(bat);

}

120 }

void WriteBytes1Wire(const uchar *inbytes , uchar len , char bat) {

const uchar *data;

125 for(data=inbytes; data <inbytes+len; data ++) {

WriteByte1Wire (*data , bat);

}

}

130 uchar ReadByte1Wire(char bat) {

uchar mask , data =0;

// reset both pin states

BAT_A_OUTPUT_HIGH

135 BAT_B_OUTPUT_HIGH

BAT_A_SET_INPUT

BAT_B_SET_INPUT

for(mask=0x01; mask; mask <<=1) {

140 // disable interrupts

INTCONbits.GIE = 0;

// drop line low to initiate the read

if(bat == BAT_A) {

145 BAT_A_OUTPUT_LOW

BAT_A_SET_OUTPUT

BAT_A_SET_INPUT

} else {

BAT_B_OUTPUT_LOW

150 BAT_B_SET_OUTPUT

BAT_B_SET_INPUT

}

24

// the read must happen within 15us of dropping the pin low.

155 // setting the pin as an input takes 1us (2 more for branch)

// and reading the pin takes 3us. timing should never be more than 6us.

if(BAT_PIN_READ(bat)) {

data |= mask;

}

160
DELAY_SLOT;

// enable interrupts

INTCONbits.GIE = 1;

165 }

BAT_A_SET_INPUT

BAT_B_SET_INPUT

170 return data;

}

void WriteByte1Wire(uchar data , char bat) {

uchar mask;

175
BAT_A_OUTPUT_HIGH

BAT_B_OUTPUT_HIGH

BAT_A_SET_INPUT

BAT_B_SET_INPUT

180
if(bat == BAT_A) {

BAT_A_SET_OUTPUT

} else {

BAT_B_SET_OUTPUT

185 }

for(mask=0x01; mask; mask <<=1) {

// disable interrupts

INTCONbits.GIE = 0;

190
if(data&mask) {

BAT_A_OUTPUT_LOW

NOP

BAT_A_OUTPUT_HIGH

195
BAT_B_OUTPUT_LOW

NOP

BAT_B_OUTPUT_HIGH

} else {

200 BAT_A_OUTPUT_LOW

BAT_B_OUTPUT_LOW

}

DELAY_SLOT;

205
BAT_A_OUTPUT_HIGH

BAT_B_OUTPUT_HIGH

// enable interrupts between bits so we don ’t bog

210 // the rest of the system down

25

INTCONbits.GIE = 1;

}

BAT_A_SET_INPUT

215 BAT_B_SET_INPUT

return;

}

220 // Returns:

// -1 if batmon does not respond

// 0 if everything is ok

char Reset1WireBus(char bat) {

char retval = 0;

225
// disable interrupts

INTCONbits.GIE = 0;

BAT_A_SET_INPUT

230 BAT_B_SET_INPUT

BAT_A_OUTPUT_HIGH

BAT_B_OUTPUT_HIGH

if(bat == BAT_A) {

235 BAT_A_SET_OUTPUT

} else {

BAT_B_SET_OUTPUT

}

240 // send reset pulse

BAT_A_OUTPUT_LOW

BAT_B_OUTPUT_LOW

// keep low for reset time

245 DELAY_T_RSTL;

// verify response

BAT_A_SET_INPUT

BAT_B_SET_INPUT

250 DELAY_T_PDH;

if(BAT_PIN_READ(bat)) {

retval = -1;

}

255 // enable interrupts

INTCONbits.GIE = 1;

DELAY_T_RSTH;

260 return retval;

}

7.2 Battery Monitor

#ifndef CDH_BATMON_H

26

#define CDH_BATMON_H

#include <p18cxxx.h>

5 #include <string.h>

#include <delays.h>

#include <portb.h>

typedef unsigned char uchar;

10
struct BatteryMonitorData {

uchar protection;

uchar status;

uchar voltage;

15 uchar temperature;

int current;

int accumCurrent;

};

20 /* battery monitor functions */

#define SKIP_NET_ADD 0xCC

#define WRITE_FUNCTION 0x6C

#define READ_FUNCTION 0x69

25 /* bat mon registers */

#define REG_PROT 0x00

#define REG_STAT 0x01

#define REG_EEPROM 0x07

#define REG_SFR 0x08

30 #define REG_VOLT_MSB 0x0C

#define REG_VOLT_LSB 0x0D // only upper 3 bits matter

#define REG_CUR_MSB 0x0E

#define REG_CUR_LSB 0x0F

#define REG_ACC_CUR_MSB 0x10

35 #define REG_ACC_CUR_LSB 0x11 // only upper 5 bits matter

#define REG_TEMP_MSB 0x18

#define REG_TEMP_LSB 0x19 // only upper 3 bits matter

/* PROT bits */

40 #define PROT_DE 0x01 /* discharge enable */

#define PROT_CE 0x02 /* charge enable */

#define PROT_DC 0x04 /* /DC pin (readonly) */

#define PROT_CC 0x08 /* /CC pin (readonly) */

#define PROT_DOC 0x10 /* discharge overcurrent flag */

45 #define PROT_COC 0x20 /* charge overcurrent flag */

#define PROT_UV 0x40 /* undervoltage flag */

#define PROT_OV 0x80 /* overvoltage flag */

// abstracting away the battery monitors so they were not dependant on specific pins

50 // was not possible , since the code is very time critical.

#define BAT_A 0x01

#define BAT_B 0x02

#define BAT_A_SET_OUTPUT _asm BCF TRISB , 0, 0 _endasm

55 #define BAT_A_SET_INPUT _asm BSF TRISB , 0, 0 _endasm

#define BAT_A_OUTPUT_HIGH _asm BSF LATB , 0, 0 _endasm

#define BAT_A_OUTPUT_LOW _asm BCF LATB , 0, 0 _endasm

#define BAT_B_SET_OUTPUT _asm BCF TRISB , 1, 0 _endasm

27

60 #define BAT_B_SET_INPUT _asm BSF TRISB , 1, 0 _endasm

#define BAT_B_OUTPUT_HIGH _asm BSF LATB , 1, 0 _endasm

#define BAT_B_OUTPUT_LOW _asm BCF LATB , 1, 0 _endasm

#define NOP _asm NOP _endasm

65
#define BAT_PIN_READ(bat) (PORTB & bat) // ~4us

// DS2761 timings (DS2761 data sheet p24)

// timing values between the minimum and maximum timings have been chosen to allow some padding

70 // - there is no way to specify a delay between 1TCY (a NOP) and 10TCYx (10 instructions).

// hence the multiple Delay1TCY

#define DELAY_SLOT (Delay10TCYx (6))

75
// reset timing

#define DELAY_T_RSTH (Delay100TCYx (5))

#define DELAY_T_RSTL (Delay100TCYx (5))

// presence detect

80 #define DELAY_T_PDH (Delay10TCYx (7))

char ResetBatteryMonitor(char bat);

char BatteryMonitorRead(struct BatteryMonitorData *batmon , uchar battery);

85
char BatmonReadReg(uchar reg , uchar bat);

char BatmonWriteReg(uchar reg , uchar bat);

void ReadBytes1Wire(uchar *bytes , uchar len , char bat);

90 uchar ReadByte1Wire(char bat);

void WriteBytes1Wire(const uchar *bytes , uchar len , char bat);

void WriteByte1Wire(uchar data , char bat);

char Reset1WireBus(char bat);

95
#endif

7.3 Real Time Clock

/*

* rtc.c

*

* DS3231 RTC driver

5 *

* Author: Jacob Farkas

* $Id: rtc.c,v 1.1 2004/12/17 20:37:32 kleveque Exp $

*/

#include "rtc.h"

10
/* GLOBALS */

static unsigned char rtc_alm1_enable = 0, rtc_alm2_enable = 0;

/*

15 * rtc_readRegs(union rtc_regs *rtc_read)

28

*

* PARAMETERS:

* *rtc_read - this union is filled with a copy of the RTC ’s registers

*

20 * DESCRIPTION:

* Reads in all of the registers from the RTC into a rtc_regs union. By calling

* this you can get the current time from the RTC. Run the rtc_regs union

* through rtc_regsToTime () to get a timestamp that ’s easier to work with.

*

25 * RETURNS:

* ERR_NONE on success

* I2C error code on I2C errors

*/

char rtc_readRegs(union rtc_regs *rtc_read)

30 {

unsigned char startReg = REG_SECOND;

memset(rtc_read , 0x00 , sizeof(union rtc_regs));

35 /* point us at the seconds register */

if ((err = writeToSlave(RTC_DS3231 , &startReg , 1)) < 0) {

return err;

}

40 /* read from the registers */

return readFromSlave(RTC_DS3231 , sizeof(union rtc_regs), rtc_read ->data);

}

/*

45 * rtc_writeTime(union rtc_regs *rtc_write)

*

* PARAMETERS:

* *rtc_write - the registers to write to the RTC.

*

50 * DESCRIPTION:

* Writes the time information in rtc_write to the RTC. Only second , minute ,

* hour , day , date , month , and year are written - the alarms , control , and

* status registers are left untouched.

*

55 * RETURNS:

* ERR_NONE on success

* I2C error code on I2C errors

*/

char rtc_writeTime(struct rtc_time *rtctime)

60 {

unsigned char rtc_buf[sizeof(union rtc_regs) + 1];

static union rtc_regs rtc_write;

rtc_timeToRegs(rtctime , &rtc_write);

65
rtc_buf [0] = REG_SECOND;

memcpy ((void *)(rtc_buf +1), (void *)& rtc_write , sizeof(union rtc_regs));

return writeToSlave(RTC_DS3231 , rtc_buf , sizeof(union rtc_regs) + 1);

70 }

/*

* rtc_readtime

29

*

75 * DESCRIPTION:

* reads the time from the RTC into an rtc_time struct

*

* PARAMETERS

* struct rtc_time *t

80 * pointer to the rtc_time struct to fill

*

* RETURNS:

* ERR_NONE on success

* I2C error code on failure

85 */

char rtc_readTime(struct rtc_time *t)

{

static union rtc_regs rregs;

90 if ((err = rtc_readRegs (& rregs)) < 0) {

return err;

}

return rtc_regsToTime (&rregs , t);

95 }

/*

* rtc_timeToRegs(struct rtc_time *t, union rtc_regs *r)

*

100 * PARAMETERS:

* *t - the timestamp to place in the registers

* *r - pointer to the register union to fill

*

* DESCRIPTION:

105 * Converts a given timestamp struct into registers for the RTC. These

* registers can then be transferred directly to the RTC to program a time

*

* RETURNS:

* ERR_NONE at all times

110 */

char rtc_timeToRegs(struct rtc_time *t, union rtc_regs *r)

{

unsigned char date , ten_date;

memset(r, 0x00 , sizeof(union rtc_regs));

115
r->reg.second.b.second = t->second % 10;

r->reg.second.b.ten_second = t->second / 10;

r->reg.minute.b.minute = t->minute % 10;

120 r->reg.minute.b.ten_minute = t->minute / 10;

r->reg.hour.b.hour = t->hour % 10;

if (t->hr_format == TWELVE_HOUR) {

/* this is a hackish thing to do , but it avoids division and casting */

125 r->reg.hour.b.ten_hour = (t->hour > 9);

r->reg.hour.b.ampm = t->ampm;

} else {

if (t->hour >= 20) {

r->reg.hour.b.ten_hour = 0;

130 r->reg.hour.b.ampm = 1;

} else if (t->hour >= 10) {

30

r->reg.hour.b.ten_hour = 1;

r->reg.hour.b.ampm = 0;

} else {

135 r->reg.hour.b.ten_hour = 0;

r->reg.hour.b.ampm = 0;

}

}

r->reg.hour.b.format = t->hr_format;

140
r->reg.day.b.day = t->day;

r->reg.date.b.date = t->date % 10;

r->reg.date.b.ten_date = t->date / 10;

145
date=t->date;

date=t->date %10;

ten_date=t->date /10;

150 r->reg.month.b.month = t->month % 10;

r->reg.month.b.ten_month = t->month / 10;

r->reg.month.b.century = t->century;

r->reg.year.b.year = t->year % 10;

155 r->reg.year.b.ten_year = t->year / 10;

return ERR_NONE;

}

160 /*

* rtc_regsToTime(union rtc_regs *r, struct rtc_time *t

*

* PARAMETERS:

* *r - the registers to convert into a timestamp

165 * *t - the timestamp that is created

*

* DESCRIPTION:

* Converts an rtc_regs union into a timestamp for easier manipulation/reading

*

170 * RETURNS:

* ERR_NONE at all times

*/

char rtc_regsToTime(union rtc_regs *r, struct rtc_time *t)

{

175 memset(t, 0x00 , sizeof(struct rtc_time));

t->second = r->reg.second.b.second + r->reg.second.b.ten_second * 10;

t->minute = r->reg.minute.b.minute + r->reg.minute.b.ten_minute * 10;

180 if (r->reg.hour.b.format) {

/* 12 hour mode */

t->hr_format = TWELVE_HOUR;

t->hour = r->reg.hour.b.hour + r->reg.hour.b.ten_hour * 10;

t->ampm = r->reg.hour.b.ampm;

185 } else {

/* 24 hour mode */

t->hr_format = TWENTYFOUR_HOUR;

t->hour =

r->reg.hour.b.hour + r->reg.hour.b.ten_hour * 10 +

31

190 r->reg.hour.b.ampm * 20;

/* ampm is invalid in this case */

t->ampm = TIME_MASK;

}

195 t->day = r->reg.day.b.day;

t->date = r->reg.date.b.date + r->reg.date.b.ten_date * 10;

t->month = r->reg.month.b.month + r->reg.month.b.ten_month * 10;

t->century = r->reg.month.b.century;

t->year = r->reg.year.b.year + r->reg.year.b.ten_year * 10;

200
return ERR_NONE;

}

/*

205 * rtc_setAlarm1(struct rtc_time *t)

*

* PARAMETERS:

* *t - the time to set an alarm for.

*

210 * DESCRIPTION:

* According to the data sheet , there are only certain combinations of masks

* that will work. if an invalid mask is encountered , ERR_RTC_INVALID_MASK is returned ,

* otherwise 0 is returned.

* If a time is given , the alarm will go off when the current time matches that

215 * time. If the field is set to TIME_MASK , that field will always match.

*

* RETURNS:

* ERR_NONE on success

* ERR_RTC_INVALID_MASK if the alarm given has an invalid mask

220 * I2C error code on I2C errors

*/

char rtc_setAlarm1(struct rtc_time *t)

{

union rtc_regs r;

225 unsigned char mask = 0, i;

if (t->second != TIME_MASK) {

r.reg.a1_second.b.second = t->second % 10;

r.reg.a1_second.b.ten_second = t->second / 10;

230 r.reg.a1_second.b.a1m1 = 0;

} else {

r.reg.a1_second.b.a1m1 = 1;

mask = 1;

}

235
if (t->minute != TIME_MASK) {

if (mask) {

return ERR_RTC_INVALID_MASK;

}

240
r.reg.a1_minute.b.minute = t->minute % 10;

r.reg.a1_minute.b.ten_minute = t->minute / 10;

r.reg.a1_minute.b.a1m2 = 0;

} else {

245 r.reg.a1_minute.b.a1m2 = 1;

mask = 1;

}

32

if (t->hour != TIME_MASK) {

250 if (mask) {

return ERR_RTC_INVALID_MASK;

}

r.reg.a1_hour.b.hour = t->hour % 10;

255 if (t->hr_format == TWELVE_HOUR) {

r.reg.a1_hour.b.ten_hour = (t->hour > 9);

r.reg.a1_hour.b.ampm = t->ampm;

} else {

if (t->hour >= 20) {

260 r.reg.a1_hour.b.ten_hour = 0;

r.reg.a1_hour.b.ampm = 1;

} else if (t->hour >= 10) {

r.reg.a1_hour.b.ten_hour = 1;

r.reg.a1_hour.b.ampm = 0;

265 } else {

r.reg.a1_hour.b.ten_hour = 0;

r.reg.a1_hour.b.ampm = 0;

}

}

270 r.reg.a1_hour.b.format = t->hr_format;

r.reg.a1_hour.b.a1m3 = 0;

} else {

r.reg.a1_hour.b.a1m3 = 1;

mask = 1;

275 }

if (t->date != TIME_MASK) {

if (mask) {

return ERR_RTC_INVALID_MASK;

280 }

r.reg.a1_daydate.b.daydate = t->date % 10;

r.reg.a1_daydate.b.ten_date = t->date / 10;

r.reg.a1_daydate.b.a1m4 = 0;

r.reg.a1_daydate.b.dydt = 0;

285 // } else if(t->day!= TIME_MASK) {

// /* we can ’t do both a day and a date - they have to pick just one */

// if(mask && t->date!= TIME_MASK)

// return ERR_RTC;

// r.reg.a1_daydate.b.daydate=t->day;

290 // r.reg.a1_daydate.b.a1m4 =0;

// r.reg.a1_daydate.b.dydt =1;

} else {

r.reg.a1_daydate.b.a1m4 = 1;

}

295
/* disable + clear alarms before doing anything else */

if ((err = rtc_disableAlarms (0, 0)) < 0) {

return err;

}

300
if ((err = rtc_clearAlarms (0, 0)) < 0) {

return err;

}

305 /* set the alarm time */

33

if ((err = CP2_StartI2C ()) < 0) {

return err;

}

310 if ((err = CP2_WriteI2C(RTC_DS3231 | I2C_WRITE)) < 0) {

return err;

}

/* start in the alarm1.seconds register */

315 if ((err = CP2_WriteI2C(REG_A1_SECOND)) < 0) {

return err;

}

for (i = REG_A1_SECOND; i <= REG_A1_DAYDATE; i++) {

320 if ((err = CP2_WriteI2C(r.data[i])) < 0) {

return err;

}

}

325 if ((err = CP2_StopI2C ()) < 0) {

return err;

}

/* set the alarm interrupt bit */

330 rtc_alm1_enable = 1;

r.reg.control.b._eosc = 0;

r.reg.control.b.intcn = 1;

r.reg.control.b.a1ie = 1;

r.reg.control.b.a2ie = rtc_alm2_enable;

335
if ((err = CP2_StartI2C ()) < 0) {

return err;

}

340 if ((err = CP2_WriteI2C(RTC_DS3231 | I2C_WRITE)) < 0) {

return err;

}

if ((err = CP2_WriteI2C(REG_CONTROL)) < 0) {

345 return err;

}

if ((err = CP2_WriteI2C(r.data[REG_CONTROL])) < 0) {

return err;

350 }

if ((err = CP2_StopI2C ()) < 0) {

return err;

}

355
return ERR_NONE;

}

/*

360 * rtc_setAlarm2(struct rtc_time *t)

*

* PARAMETERS:

* *t - the time to set an alarm for

34

*

365 * DESCRIPTION:

* alarm2 only accepts minutes , hours , and day/date

* refer to the notes on rtc_setAlarm1 ()

*

* RETURNS:

370 * ERR_NONE on success

* ERR_RTC if there ’s a mask error

* I2C error code on I2C errors

*/

char rtc_setAlarm2(struct rtc_time *t)

375 {

union rtc_regs r;

unsigned char mask = 0, i;

if (t->minute != TIME_MASK) {

380 if (mask) {

return ERR_RTC_INVALID_MASK;

}

r.reg.a2_minute.b.minute = t->minute % 10;

385 r.reg.a2_minute.b.ten_minute = t->minute / 10;

r.reg.a2_minute.b.a2m2 = 0;

} else {

r.reg.a2_minute.b.a2m2 = 1;

mask = 1;

390 }

if (t->hour != TIME_MASK) {

if (mask) {

return ERR_RTC_INVALID_MASK;

395 }

r.reg.a2_hour.b.hour = t->hour % 10;

if (t->hr_format == TWELVE_HOUR) {

/* this is a hackish thing to do , but it avoids division and casting */

400 r.reg.a2_hour.b.ten_hour = (t->hour > 9);

r.reg.a2_hour.b.ampm = t->ampm;

} else {

if (t->hour >= 20) {

r.reg.a2_hour.b.ten_hour = 0;

405 r.reg.a2_hour.b.ampm = 1;

} else if (t->hour >= 10) {

r.reg.a2_hour.b.ten_hour = 1;

r.reg.a2_hour.b.ampm = 0;

} else {

410 r.reg.a2_hour.b.ten_hour = 0;

r.reg.a2_hour.b.ampm = 0;

}

}

r.reg.a2_hour.b.format = t->hr_format;

415 r.reg.a2_hour.b.a2m3 = 0;

} else {

r.reg.a2_hour.b.a2m3 = 1;

mask = 1;

}

420
if (t->day != TIME_MASK) {

35

/* we can ’t do both a day and a date - they have to pick just one */

if (mask || t->date != TIME_MASK) {

return ERR_RTC_INVALID_MASK;

425 }

r.reg.a2_daydate.b.daydate = t->day;

r.reg.a2_daydate.b.a2m4 = 0;

r.reg.a2_daydate.b.dydt = 1;

430 } else if (t->date != TIME_MASK) {

if (mask) {

return ERR_RTC_INVALID_MASK;

}

435 r.reg.a2_daydate.b.daydate = t->date % 10;

r.reg.a2_daydate.b.ten_date = t->date / 10;

r.reg.a2_daydate.b.a2m4 = 0;

r.reg.a2_daydate.b.dydt = 0;

} else {

440 r.reg.a2_daydate.b.a2m4 = 1;

}

/* set the alarm time */

if ((err = CP2_StartI2C ()) < 0) {

445 return err;

}

if ((err = CP2_WriteI2C(RTC_DS3231 | I2C_WRITE)) < 0) {

return err;

450 }

/* start in the alarm1.seconds register */

if ((err = CP2_WriteI2C(REG_A2_MINUTE)) < 0) {

return err;

455 }

for (i = REG_A2_MINUTE; i <= REG_A2_DAYDATE; i++) {

if ((err = CP2_WriteI2C(r.data[i])) < 0) {

460 return err;

}

}

if ((err = CP2_StopI2C ()) < 0) {

465 return err;

}

/* set the alarm interrupt bit */

rtc_alm2_enable = 1;

470 r.reg.control.b._eosc = 0;

r.reg.control.b.intcn = 1;

r.reg.control.b.a1ie = rtc_alm1_enable;

r.reg.control.b.a2ie = 1;

475 if ((err = CP2_StartI2C ()) < 0) {

return err;

}

if ((err = CP2_WriteI2C(RTC_DS3231 | I2C_WRITE)) < 0) {

36

480 return err;

}

if ((err = CP2_WriteI2C(REG_CONTROL)) < 0) {

return err;

485 }

if ((err = CP2_WriteI2C(r.data[REG_CONTROL])) < 0) {

return err;

}

490
if ((err = CP2_StopI2C ()) < 0) {

return err;

}

495 return ERR_NONE;

}

char rtc_disableAlarms(char a1 , char a2)

{

500 /* write to the control register */

if ((err = CP2_StartI2C ()) < 0) {

return err;

}

505 if ((err = CP2_WriteI2C(RTC_DS3231 | I2C_WRITE)) < 0) {

return err;

}

if ((err = CP2_WriteI2C(REG_CONTROL)) < 0) {

510 return err;

}

if ((err = CP2_WriteI2C (0x04 | ((a2 & 0x01) << 1) | (a1 & 0x01))) < 0) {

return err;

515 }

if ((err = CP2_StopI2C ()) < 0) {

return err;

}

520
return ERR_NONE;

}

/*

525 * rtc_checkOSF

*

* DESCRIPTION:

* checks the RTC oscillator stop flag and clears it if needed.

*

530 * PARAMETERS:

* none

*

* RETURNS:

* 1 if the flag was set and cleared

535 * 0 if the flag was not set

*/

char rtc_checkOSF(void)

37

{

unsigned char startReg []={ REG_STATUS , 0};

540 unsigned char stat = 0;

/* we only want to return a 1 or a 0 for the status of the OSF.

* returning an error value from an I2C transaction would mess things up

* so we ’re just going to ignore I2C errors.

545 */

/* point us at the status register */

if ((err = writeToSlave(RTC_DS3231 , startReg , 1)) < 0) {

return err;

}

550
/* read from the status register */

if ((err = readFromSlave(RTC_DS3231 , 1, &stat)) < 0) {

return err;

}

555
if (stat & 0x80) {

/* clear the OSF */

startReg [1]= stat & 0x7F;

560 if ((err = writeToSlave(RTC_DS3231 , startReg , 2)) < 0) {

return err;

}

return 1;

} else {

565 return 0;

}

}

/*

570 * rtc_clearAlarms(char a1 , char a2)

*

* PARAMETERS:

* a1 - alarm1 clear flag

* a2 - alarm2 clear flag

575 *

* DESCRIPTION:

* Clears the alarm flags for the given alarms. 1 leaves the flag as is , 0

* clears the flag.

* Alarm flags must be cleared for another interrupt to occur. It is not

580 * possible to set an alarm flag , only clear it.

* For example , to clear alarm 1 but not alarm 2, call rtc_clearAlarms (0,1)

*

* RETURNS:

* ERR_NONE on success

585 * I2C error code on I2C errors

*/

char rtc_clearAlarms(char a1 , char a2)

{

unsigned char stat;

590
/* write in the status masked with the enable bits */

if ((err = CP2_StartI2C ()) < 0) {

return err;

}

595

38

if ((err = CP2_WriteI2C(RTC_DS3231 | I2C_WRITE)) < 0) {

return err;

}

600 if ((err = CP2_WriteI2C(REG_STATUS)) < 0) {

return err;

}

if ((err = CP2_WriteI2C ((a2 & 0x01) << 1 | a1 & 0x01)) < 0) {

605 return err;

}

if ((err = CP2_StopI2C ()) < 0) {

return err;

610 }

return ERR_NONE;

}

615 /*

* rtc_readTemp(int *temp)

*

* PARAMETERS:

* int *temp - variable to store the temperature reading in

620 *

* DESCRIPTION:

* Reads the temperature from the internal temperature sensor on the DS3231

* NOTE: the RTC only does a temperature grab every 64 seconds. if you ’re

* polling this frequently and not noticing a change , that ’s probably

625 * the reason.

*

* RETURNS:

* ERR_NONE on success

* I2C error code on I2C errors

630 */

char rtc_readTemp(int *temp) {

unsigned char startReg = REG_RTC_TEMP_MSB;

char temps [2] = {0, 0};

int t=0;

635 *temp =0;

if ((err = writeToSlave(RTC_DS3231 , &startReg , 1)) < 0) {

return err;

}

640
if ((err = readFromSlave(RTC_DS3231 , 2, (unsigned char*) temps)) < 0) {

return err;

}

645 *temp = temps [0];

*temp = (*temp <<2) | (temps [1]>>6);

t=*temp;

650 return ERR_NONE;

}

/*

39

* initControl ()

655 *

* PARAMETERS:

* void

*

* DESCRIPTION:

660 * Sets up the RTC for us to use it. This really only ever needs to be called

* once since the RTC is on a battery backup that lasts just about forever ,

* but it doesn ’t hurt to do all this stuff every time we restart just to make

* sure

*

665 * RETURNS:

* 0 on success

* I2C error code on I2C errors

*/

char initRTC(void)

670 {

union rtc_regs rtc;

/* enable the oscilator (0 is enable) */

rtc.reg.control.b._eosc = 0;

675
/* enables interrupts even in battery backup mode */

rtc.reg.control.b.bbsqi = 1;

/* (1) enables interrupts rather than a square wave */

680 rtc.reg.control.b.intcn = 1;

/* we don ’t use the rate select , but leave it at its default */

rtc.reg.control.b.rs1 = 1;

rtc.reg.control.b.rs2 = 1;

685
/* disable alarms */

rtc_alm1_enable = rtc_alm2_enable = 0;

rtc.reg.control.b.intcn = 1;

rtc.reg.control.b.a1ie = 0;

690 rtc.reg.control.b.a2ie = 0;

/* write the control bits */

if ((err = CP2_StartI2C ()) < 0) {

return err;

695 }

if ((err = CP2_WriteI2C(RTC_DS3231 | I2C_WRITE)) < 0) {

return err;

}

700
if ((err = CP2_WriteI2C(REG_CONTROL)) < 0) {

return err;

}

if ((err = CP2_WriteI2C(rtc.data[REG_CONTROL])) < 0) {

705 return err;

}

/* turn off all the alarm flags */

if ((err = CP2_WriteI2C (0x00)) < 0) {

710 return err;

}

40

if ((err = CP2_StopI2C ()) < 0) {

return err;

715 }

/* the OSF flag is on at poweron - check it to turn it off */

rtc_checkOSF ();

720 return ERR_NONE;

}

#ifdef RTC_TEST

/*

725 * rtcInterrupt(void)

*

* PARAMETERS:

* void

*

730 * DESCRIPTION

* Timer interrupt handler

*

* RETURNS:

* void

735 */

#pragma interrupt rtcInterrupt

void rtcInterrupt(void)

{

/* SANITY: make sure we were called by an interrupt */

740 if (! INTCONbits.INT0F)

return;

/* toggle pin 24 to check the timing */

LATAbits.LATA0 = !LATAbits.LATA0;

745
/*

* we ’re being interrupted , but we don ’t have any alarms set. this means

* the square wave generator is on. call initControl () to set up things

* the way we like ’em

750 * XXX: disabled for now because calling I2C in interrupts is a bad idea

if(! rtc_alm1_enable && !rtc_alm2_enable) {

initControl ();

return;

}

755 */

rtc_clearAlarms (0, 0);

INTCONbits.INT0F = 0;

760 return;

}

#pragma code

765 /*

* interruptHandler ()

*

* PARAMETERS:

* void

41

770 *

* DESCRIPTION:

* This method is called when an interrupt occurs

*

* RETURNS:

775 * void

*/

#pragma interrupt interruptHandler

void interruptHandler ()

{

780 if (INTCONbits.INT0F) {

rtcInterrupt ();

}

}

785 #pragma code

#pragma code high_vector =0x08

void isr(void)

{

790 _asm GOTO interruptHandler _endasm

}

#pragma code

void main(void)

795 {

union rtc_regs rtc_in1 , rtc_in2;

union rtc_regs rtc_out;

struct rtc_time alm , set_time;

char err =0;

800 int temp =0;

if (err = CP2_OpenI2C(MASTER , SLEW_OFF))

return;

SSPADD = SSPADD_CLOCK;

805
/* initalize the correct control bits */

err = initRTC ();

set_time.second = 42;

810 set_time.minute = 1;

set_time.hour = 8;

set_time.ampm = PM;

set_time.hr_format = TWELVE_HOUR;

set_time.day = Friday;

815 set_time.date = 20;

set_time.month = April;

set_time.year = 25;

set_time.century = 0;

820 err = rtc_writeTime (& set_time);

err = rtc_readRegs (& rtc_in1);

Delay10KTCYx (100);

err = rtc_readRegs (& rtc_in2);

825
memset (&set_time , 0x00 , sizeof(struct rtc_time));

42

rtc_readTime (& set_time);

830 /* enable PIC interrupt pin from rtc */

RCONbits.IPEN = 0; /* disable interrupt priority */

INTCONbits.GIE = 1; /* enable interrupts globally */

INTCONbits.PEIE = 1; /* enable peripheral interrupts */

INTCON2bits.INTEDG0 = 0; /* falling edge trigger */

835 INTCONbits.INT0IE = 1; /* enable interrupt 0 */

TRISAbits.TRISA0 = 0; /* make RA0 an output pin */

TRISBbits.TRISB0 = 1; /* make INT0 an input pin */

alm.second = alm.minute = alm.hour = alm.day = alm.date = TIME_MASK;

840 if (err = rtc_setAlarm1 (&alm) < 0) {

while (1) ;

}

/* spin in circles and wait for interrupts */

845 while (1) {

//err = rtc_readTemp (&temp);

}

return;

850 }

#endif

7.4 Real Time Clock

/*

* rtc.h

*

* DS3231 RTC driver

5 *

* Author: Jacob Farkas

* $Id: rtc.h,v 1.1 2004/12/17 20:37:32 kleveque Exp $

*/

#ifndef _RTC_H

10 #define _RTC_H

#include <delays.h>

#include <p18cxxx.h>

#include <string.h>

15
#include "cp2 -common.h"

#include "cp2 -i2c.h"

#include "structs.h"

20 // enable to set up RTC main loop and interrupt handlers for testing

#undef RTC_TEST

#define TWELVE_HOUR 1

#define TWENTYFOUR_HOUR 0

25 #define AM 0

#define PM 1

#define TIME_MASK 0xFF

43

30 /* REGISTERS */

#define REG_SECOND 0x00

#define REG_MINUTE 0x01

#define REG_HOUR 0x02

#define REG_DAY 0x03

35 #define REG_DATE 0x04

#define REG_MONTH 0x05

#define REG_YEAR 0x06

#define REG_A1_SECOND 0x07

#define REG_A1_MINUTE 0x08

40 #define REG_A1_HOUR 0x09

#define REG_A1_DAYDATE 0x0A

#define REG_A2_MINUTE 0x0B

#define REG_A2_HOUR 0x0C

#define REG_A2_DAYDATE 0x0D

45 #define REG_CONTROL 0x0E

#define REG_STATUS 0x0F

#define REG_AGING 0x10

#define REG_RTC_TEMP_MSB 0x11

#define REG_RTC_TEMP_LSB 0x12

50
enum month {

January ,

Feburary ,

March ,

55 April ,

May ,

June ,

July ,

August ,

60 September ,

October ,

November ,

December ,

};

65
enum day {

Monday ,

Tuesday ,

Wednesday ,

70 Thursday ,

Friday ,

Saturday ,

Sunday ,

};

75
/* FUNCTION PROTOTYPES */

char rtc_readRegs(union rtc_regs *);

char rtc_writeTime(struct rtc_time *);

char rtc_readTime(struct rtc_time *);

80
char rtc_regsToTime(union rtc_regs *, struct rtc_time *);

char rtc_timeToRegs(struct rtc_time *, union rtc_regs *);

char rtc_setAlarm1(struct rtc_time *);

85 char rtc_setAlarm2(struct rtc_time *);

char rtc_disableAlarms(char , char);

44

char rtc_clearAlarms(char , char);

char rtc_checkOSF(void);

char rtc_readTemp(int *);

90
char initRTC(void);

void rtcInterrupt(void);

void interruptHandler(void);

95
#endif

7.5 Real Time Clock Structure

/* RTC */

struct rtc_time {

unsigned char second;

unsigned char minute;

5 unsigned char hour;

unsigned char ampm; /* am or pm for 12 hour */

unsigned char hr_format; /* 24 (0) or 12 (1) hour format */

unsigned char day; /* day of the week */

unsigned char date; /* date of the month */

10 /* the following three fields are not used in setting an alarm */

unsigned char month;

unsigned char year;

unsigned char century;

};

15
union rtc_regs {

unsigned char data [17];

struct {

union {

20 unsigned char data;

struct {

unsigned second :4;

unsigned ten_second :3;

unsigned PADDING :1;

25 } b;

} second;

union {

unsigned char data;

30 struct {

unsigned minute :4;

unsigned ten_minute :3;

unsigned PADDING :1;

} b;

35 } minute;

union {

unsigned char data;

struct {

40 unsigned hour :4;

unsigned ten_hour :1;

/* in 24 hour mode , this is another 10 hours */

45

unsigned ampm :1;

/* sets 12/24 hour mode (hi/lo) */

45 unsigned format :1;

unsigned PADDING :1;

} b;

} hour;

50 union {

unsigned char data;

struct {

unsigned day:3;

unsigned PADDING :5;

55 } b;

} day;

union {

unsigned char data;

60 struct {

unsigned date :4;

unsigned ten_date :2;

unsigned PADDING :2;

} b;

65 } date;

union {

unsigned char data;

struct {

70 unsigned month :4;

unsigned ten_month :1;

unsigned PADDING :2;

unsigned century :1;

} b;

75 } month;

union {

unsigned char data;

struct {

80 unsigned year :4;

unsigned ten_year :4;

} b;

} year;

85 union {

unsigned char data;

struct {

unsigned second :4;

unsigned ten_second :3;

90 unsigned a1m1 :1;

} b;

} a1_second;

union {

95 unsigned char data;

struct {

unsigned minute :4;

unsigned ten_minute :3;

unsigned a1m2 :1;

100 } b;

46

} a1_minute;

union {

unsigned char data;

105 struct {

unsigned hour :4;

unsigned ten_hour :1;

/* in 24 hour mode , this is another 10 hours */

unsigned ampm :1;

110 /* sets 12/24 hour mode (hi/lo) */

unsigned format :1;

unsigned a1m3 :1;

} b;

} a1_hour;

115
union {

unsigned char data;

struct {

unsigned daydate :4;

120 unsigned ten_date :2;

unsigned dydt :1;

unsigned a1m4 :1;

} b;

} a1_daydate;

125
union {

unsigned char data;

struct {

unsigned minute :4;

130 unsigned ten_minute :3;

unsigned a2m2 :1;

} b;

} a2_minute;

135 union {

unsigned char data;

struct {

unsigned hour :4;

unsigned ten_hour :1;

140 /* in 24 hour mode , this is another 10 hours */

unsigned ampm :1;

/* sets 12/24 hour mode (hi/lo) */

unsigned format :1;

unsigned a2m3 :1;

145 } b;

} a2_hour;

union {

unsigned char data;

150 struct {

unsigned daydate :4;

unsigned ten_date :2;

unsigned dydt :1;

unsigned a2m4 :1;

155 } b;

} a2_daydate;

union {

47

unsigned char data;

160 struct {

unsigned a1ie :1;

unsigned a2ie :1;

unsigned intcn :1;

unsigned rs1:1;

165 unsigned rs2:1;

unsigned bbsqi :1;

unsigned PADDING :1;

unsigned _eosc :1;

} b;

170 } control;

union {

unsigned char data;

struct {

175 unsigned a1f:1;

unsigned a2f:1;

unsigned PADDING :5;

unsigned osf:1;

} b;

180 } status;

union {

unsigned char data;

struct {

185 unsigned rout0 :1;

unsigned rout1 :1;

unsigned ds0:1;

unsigned ds1:1;

unsigned tcs0 :1;

190 unsigned tcs1 :1;

unsigned tcs2 :1;

unsigned tcs3 :1;

} b;

} trickle_charge;

195 } reg;

};

7.6 I2C Library

/*

* cp2 -i2c.h

* Author: Jacob Farkas <jfarkas@calpoly.edu >

* $Id: cp2 -i2c.h,v 1.11 2005/04/09 17:48:31 jfarkas Exp $

5 */

/* NOTE: if you add any IPC_* commands below , be sure to add them

* in order as well as updating cp2 -i2c.c

*/

10
/* Format:

* #define IPC_CPU_COMMANDNAME CNUM

* CPU = {COMM ,PAYLOAD}

* COMMANDNAME = descriptive name

48

15 * CNUM (hex) = next sequential command number for the chosen CPU

*

* #define IPC_{CPU}_COMMANDNAME_TX_LENGTH COUNT

* COUNT = bytes you expect the master (CDH) to send you

*

20 * #define IPC_{CPU}_COMMANDNAME_RX_LENGTH COUNT

* COUNT = bytes of data you will send back to the master in response

*/

#ifndef _CP2I2C_H

25 #define _CP2I2C_H

#include <p18cxxx.h>

#include <string.h>

30 #include "cp2 -common.h"

#include "cp2 -errors.h"

/* COMM STATUS BYTE BITS */

#define COMM_STAT_EN_PL 0x80 /* EN_PL pin */

35 #define COMM_STAT_SEL_RF 0x40 /* SEL_RF pin */

#define COMM_STAT_SEL_RX 0x20 /* SEL_RX pin */

#define COMM_STAT_SEL_TX 0x10 /* SEL_TX pin */

#define COMM_STAT_XCVR_MODE 0x08 /* transceiver mode: RX=0,TX=1 */

#define COMM_STAT_READY 0x04 /* ready to receive data from cdh? */

40 #define COMM_STAT_XCVR_CAL 0x02 /* transceiver calibrated? */

#define COMM_STAT_CMD_RECVD 0x01 /* valid command received? */

/* PAYLOAD STATUS BYTES */

#define PAYLOAD_STATUS_PENDINGTEST 0x80

45 #define PAYLOAD_STATUS_LEAVEMEALONE 0x40

#define PAYLOAD_STATUS_SNAPSHOTRDY 0x20

#define PAYLOAD_STATUS_CLEARALARMS 0x10

#define PAYLOAD_STATUS_RUNNINGTEST 0x08

#define PAYLOAD_STATUS_BUFFERFULL 0x04

50
/* COMM PIC COMMANDS */

#define IPC_COMM_STATUS 0x00

#define IPC_COMM_STATUS_TX_LENGTH 0

#define IPC_COMM_STATUS_RX_LENGTH 1

55
#define IPC_COMM_SENSOR_SNAP 0x01

#define IPC_COMM_SENSOR_SNAP_TX_LENGTH 0

#define IPC_COMM_SENSOR_SNAP_RX_LENGTH 4

60 #define IPC_COMM_TX_BEACON 0x02

#define IPC_COMM_TX_BEACON_TX_LENGTH 98

#define IPC_COMM_TX_BEACON_RX_LENGTH 1 // status byte

#define IPC_COMM_TX_DATA 0x03

65 #define IPC_COMM_TX_DATA_TX_LENGTH 98

#define IPC_COMM_TX_DATA_RX_LENGTH 1

/* 225 bytes = 1 sequence number + 25 snaps * 9 bytes/snap */

#define IPC_COMM_TX_PAYLOAD_DATA 0x04

70 #define IPC_COMM_TX_PAYLOAD_DATA_TX_LENGTH 226

#define IPC_COMM_TX_PAYLOAD_DATA_RX_LENGTH 1

49

#define IPC_COMM_TX_PAYLOAD_TEST 0x05

#define IPC_COMM_TX_PAYLOAD_TEST_TX_LENGTH 14

75 #define IPC_COMM_TX_PAYLOAD_TEST_RX_LENGTH 1

#define IPC_COMM_TX_RTC_TIME 0x06

#define IPC_COMM_TX_RTC_TIME_TX_LENGTH 10 /* sizeof struct rtc_time */

#define IPC_COMM_TX_RTC_TIME_RX_LENGTH 1

80
#define IPC_COMM_GET_COMMAND 0x07

#define IPC_COMM_GET_COMMAND_TX_LENGTH 0

#define IPC_COMM_GET_COMMAND_RX_LENGTH 25

85 #define IPC_COMM_ACK_COMMAND 0x08

#define IPC_COMM_ACK_COMMAND_TX_LENGTH 0

#define IPC_COMM_ACK_COMMAND_RX_LENGTH 1

#define IPC_COMM_NACK_COMMAND 0x09

90 #define IPC_COMM_NACK_COMMAND_TX_LENGTH 0

#define IPC_COMM_NACK_COMMAND_RX_LENGTH 1

#define IPC_COMM_GET_TNC_MODE 0x0A

#define IPC_COMM_GET_TNC_MODE_TX_LENGTH 1

95 #define IPC_COMM_GET_TNC_MODE_RX_LENGTH 1

#define IPC_COMM_SET_TX_POWER 0x0B

#define IPC_COMM_SET_TX_POWER_TX_LENGTH 1

#define IPC_COMM_SET_TX_POWER_RX_LENGTH 1

100
/* 200 = 8 adcs snaps * 25 bytes/snap */

#define IPC_COMM_TX_ADCS_DUMP 0x0C

#define IPC_COMM_TX_ADCS_DUMP_TX_LENGTH 200

#define IPC_COMM_TX_ADCS_DUMP_RX_LENGTH 1

105
/* PAYLOAD PIC COMMANDS */

#define IPC_PAYLOAD_STATUS 0x80

#define IPC_PAYLOAD_STATUS_SIZE_TX 0

#define IPC_PAYLOAD_STATUS_SIZE_RX 1

110
#define IPC_PAYLOAD_SENSOR_SNAP 0x81

#define IPC_PAYLOAD_SENSOR_SNAP_SIZE_TX 0

#define IPC_PAYLOAD_SENSOR_SNAP_SIZE_RX 6

115 #define IPC_PAYLOAD_TEST_SNAP 0x82

#define IPC_PAYLOAD_TEST_SNAP_SIZE_TX 0

#define IPC_PAYLOAD_TEST_SNAP_SIZE_RX 9

#define IPC_PAYLOAD_NEW_TEST 0x83

120 #define IPC_PAYLOAD_NEW_TEST_SIZE_TX 16

#define IPC_PAYLOAD_NEW_TEST_SIZE_RX 0

#define IPC_PAYLOAD_GET_TEST 0x84

#define IPC_PAYLOAD_GET_TEST_SIZE_TX 0

125 #define IPC_PAYLOAD_GET_TEST_SIZE_RX 16

#define IPC_PAYLOAD_RESTART 0x86

#define IPC_PAYLOAD_RESET_SIZE_TX 0

#define IPC_PAYLOAD_RESET_SIZE_RX 0

130

50

#define IPC_PAYLOAD_CANCEL 0x87

#define IPC_PAYLOAD_CANCEL_SIZE_TX 0

#define IPC_PAYLOAD_CANCEL_SIZE_RX 0

135 #define IPC_PAYLOAD_NUM_RESET 0x88

#define IPC_PAYLOAD_NUM_RESET_TX 0

#define IPC_PAYLOAD_NUM_RESET_RX 1

/* IPC buffer */

140 #define IPC_BUF_MAX 256

/* RETRY AND DELAYS */

/* the following macros define the number of times to retry a poll before

* failing with an error code. this prevents us from ending up in an infinite

145 * loop.

* XXXX_RETRY is the number of times to retry the poll before failing

* XXXX_DELAY is the Delay10TCYx () amount to delay between each poll

* (NOTE: this value is an unsigned char - if you pass a value more than

* 255 you ’re going to get unexpected results)

150 * If this value is undef ’ed , no delay is called

*/

#define IDLE_RETRY 250

#undef IDLE_DELAY

155 #define START_RETRY 250

#undef START_DELAY

#define ACK_RETRY 250

#undef ACK_DELAY

160
#define WRITE_RETRY 250

#undef WRITE_DELAY

#define READ_RETRY 250

165 #undef READ_DELAY

#define SSPADD_CLOCK 0x09

#define I2C_READ 0x01

170 #define I2C_WRITE 0x00

/* I2C device addresses */

#define AD_1039 0xCA

#define FLASH_AT24C 0xA0

175 #define DIGI_AD5245 0x58

#define RTC_DS3231 0xD0

/* IPC device addresses */

#define PIC_COMM 0x5A

180 #define PIC_COMM_DISABLED 0x5D

#define PIC_PAYLOAD 0x6A

#define PIC_CDH 0x7A

/* enable serial port and configures */

185 #define SSPENB 0x20

/* I2C Slave mode , 7-bit address */

#define SLAVE_7 6

/* I2C Slave mode , 10-bit address */

51

#define SLAVE_10 7

190 /* I2C Master mode */

#define MASTER 8

/* slew rate disabled for 100 kHz mode */

#define SLEW_OFF 0xC0

/* slew rate enabled for 400kHz mode */

195 #define SLEW_ON 0x00

/*******************************

* I2C

*******************************/

200 // See ANXXX from microchip for more detail on the I2C state machine

#define I2C_STATE1 0x09 // Master write , prev byte was address

#define I2C_STATE2 0x29 // Master write , prev byte was data

#define I2C_STATE3 0x0C // Master read , prev byte was address

#define I2C_STATE4 0x2C // Master read , prev byte was data

205 #define I2C_STATE5 0x28 // Master NACK

/* DATA */

static int ret;

210 extern unsigned char i2cTxBuffer [];

extern unsigned char i2cRxBuffer [];

/* PROTOTYPES */

#define I2C_IDLE () if(ret=CP2_IdleI2C ()) { return ret; }

215
char CP2_OpenI2C(unsigned char , unsigned char);

char CP2_CloseI2C(void);

char CP2_IdleI2C(void);

220
char CP2_StartI2C(void);

char CP2_StopI2C(void);

char CP2_RestartI2C(void);

225 char CP2_AckI2C(void);

char CP2_NoAckI2C(void);

char CP2_CheckAckI2C(void);

char CP2_AckPollI2C(unsigned char);

230 char CP2_WriteI2C(unsigned char);

char CP2_ReadI2C(unsigned char *);

char readFromSlave(unsigned char address , int readLength , unsigned char* buffer);

char writeToSlave(unsigned char address , unsigned char data[], int dataLength);

235 int transferI2C (unsigned char addr , unsigned char command);

#endif

7.7 I2C Library

Note: transferI2C was written by Chris Noe

/*

52

* cp2 -i2c.c

* Author: Jacob Farkas <jfarkas@calpoly.edu >

* $Id: cp2 -i2c.c,v 1.6 2005/02/21 02:03:27 cnoe Exp $

5 *

* TODO:

* -change all functions to the error handling specefications

*/

10 #include "cp2 -i2c.h"

#pragma udata I2CTXBUF

unsigned char i2cTxBuffer[IPC_BUF_MAX];

#pragma udata

15
#pragma udata I2CRXBUF

unsigned char i2cRxBuffer[IPC_BUF_MAX];

#pragma udata

20 /* drunken yak */

/* global err , used to return error codes */

char err;

// this table maps commands to their expected TX/RX lengths

25 #define IPC_COMM_COMMAND_COUNT 13

#define IPC_PAYLOAD_COMMAND_COUNT 5

#define IPC_COMMAND_TABLE_WIDTH 2

unsigned char

30 commCommandTable[IPC_COMM_COMMAND_COUNT][IPC_COMMAND_TABLE_WIDTH] = {

{IPC_COMM_STATUS_TX_LENGTH , IPC_COMM_STATUS_RX_LENGTH},

{IPC_COMM_SENSOR_SNAP_TX_LENGTH , IPC_COMM_SENSOR_SNAP_RX_LENGTH},

{IPC_COMM_TX_BEACON_TX_LENGTH , IPC_COMM_TX_BEACON_RX_LENGTH},

35 {IPC_COMM_TX_DATA_TX_LENGTH , IPC_COMM_TX_DATA_RX_LENGTH},

{IPC_COMM_TX_PAYLOAD_DATA_TX_LENGTH , IPC_COMM_TX_PAYLOAD_DATA_RX_LENGTH},

{IPC_COMM_TX_PAYLOAD_TEST_TX_LENGTH , IPC_COMM_TX_PAYLOAD_TEST_RX_LENGTH},

{IPC_COMM_TX_RTC_TIME_TX_LENGTH , IPC_COMM_TX_RTC_TIME_RX_LENGTH},

40 {IPC_COMM_GET_COMMAND_TX_LENGTH , IPC_COMM_GET_COMMAND_RX_LENGTH},

{IPC_COMM_ACK_COMMAND_TX_LENGTH , IPC_COMM_ACK_COMMAND_RX_LENGTH},

{IPC_COMM_NACK_COMMAND_TX_LENGTH , IPC_COMM_NACK_COMMAND_RX_LENGTH},

{IPC_COMM_GET_TNC_MODE_TX_LENGTH , IPC_COMM_GET_TNC_MODE_RX_LENGTH},

45 {IPC_COMM_SET_TX_POWER_TX_LENGTH , IPC_COMM_SET_TX_POWER_RX_LENGTH},

{IPC_COMM_TX_ADCS_DUMP_TX_LENGTH , IPC_COMM_TX_ADCS_DUMP_RX_LENGTH},

};

50 unsigned char

payloadCommandTable[IPC_PAYLOAD_COMMAND_COUNT][IPC_COMMAND_TABLE_WIDTH] = {

{IPC_PAYLOAD_STATUS_SIZE_TX , IPC_PAYLOAD_STATUS_SIZE_RX},

{IPC_PAYLOAD_SENSOR_SNAP_SIZE_TX , IPC_PAYLOAD_SENSOR_SNAP_SIZE_RX},

{IPC_PAYLOAD_TEST_SNAP_SIZE_TX , IPC_PAYLOAD_TEST_SNAP_SIZE_RX},

55 {IPC_PAYLOAD_NEW_TEST_SIZE_TX , IPC_PAYLOAD_NEW_TEST_SIZE_RX},

{IPC_PAYLOAD_GET_TEST_SIZE_TX , IPC_PAYLOAD_GET_TEST_SIZE_RX},

};

/*

53

60 * FUNCTION:

* CP2_OpenI2C

*

* DESCRIPTION:

* Sets up a PIC for I2C mode.

65 *

* PARAMETERS:

* unsigned char mode

* PIC master or slave mode (SSPCON1)

*

70 * unsigned char slew

* PIC slew rate setting (SSPSTAT)

*

* RETURNS:

* 0 always

75 */

char CP2_OpenI2C(unsigned char mode , unsigned char slew)

{

/* reset to power on states */

SSPSTAT &= 0x3F;

80 SSPCON1 = 0x00;

SSPCON2 = 0x00;

/* select serial mode */

SSPCON1 |= mode;

85 /* slew rate on/off */

SSPSTAT |= slew;

/* set SCL (PORTC ,3) pin to input */

DDRCbits.RC3 = 1;

90 /* set SDA (PORTC ,4) pin to input */

DDRCbits.RC4 = 1;

/* enable synchronous serial port */

SSPCON1 |= SSPENB;

95
return ERR_NONE;

}

/*

100 * FUNCTION:

* CP2_CloseI2C

*

* DESCRIPTION:

* Turns off the PIC I2C mode. The I2C pins are turned back into general I/O

105 * pins.

* We shouldn ’t ever use this method.

*

* PARAMETERS:

* none

110 *

* RETURNS:

* ERR_NONE always

*/

char CP2_CloseI2C(void)

115 {

SSPCON1 &= 0xDF;

54

return ERR_NONE;

}

120
/*

* FUNCTION:

* CP2_IdleI2C

*

125 * DESCRIPTION:

* Polls the PIC pins IDLE_RETRY times until an idle condition is achieved

* All of the following I2C methods call IdleI2C , so you shouldn ’t have to

* call this method yourself

*

130 * IdleI2C checks for bus collisions

*

* PARAMETERS:

* none

*

135 * RETURNS:

* 0 if an idle condition was achieved

* I2C error code otherwise

*/

char CP2_IdleI2C(void)

140 {

unsigned int idlectr;

for (idlectr = 0; idlectr < IDLE_RETRY; idlectr ++) {

if (PIR2bits.BCLIF) {

145 return ERR_I2C_BCLIF;

}

/* check the necessary bits for an idle condition */

if (!((SSPCON2 & 0x1F) | (SSPSTATbits.R_W))) {

150 return ERR_NONE;

}

#ifdef IDLE_DELAY

Delay10TCYx(IDLE_DELAY);

#endif

155 }

/* this is where error codes start their life */

if (SSPCON2 & 0x10) {

return ERR_I2C_NO_ACK;

160 }

if (SSPCON2 & 0x08) {

return ERR_I2C_NO_RECV;

}

165
if (SSPCON2 & 0x04) {

return ERR_I2C_NO_STOP;

}

170 if (SSPCON2 & 0x02) {

return ERR_I2C_NO_RSTRT;

}

if (SSPCON2 & 0x01) {

175 return ERR_I2C_NO_STRT;

55

}

if (SSPSTATbits.R_W) {

return ERR_I2C_NO_XMIT;

180 }

return ERR_I2C_UNKNOWN;

}

185 /*

* FUNCTION:

* CP2_StartI2C

*

* DESCRIPTION:

190 * Starts an I2C transaction on the bus

*

* PARAMETERS:

* none

*

195 * RETURNS:

* ERR_NONE if the start condition succeeded

* I2C error code otherwise

*/

char CP2_StartI2C(void)

200 {

unsigned int idlectr;

I2C_IDLE ();

205 /* send the bus start condition. this should be cleared by hardware */

SSPCON2bits.SEN = 1;

/* XXX: if we have a bus collision interrupt enabled we need to change this

* code

210 */

/* the start condition could have generated a bus collision - check */

for (idlectr = 0; idlectr < START_RETRY; idlectr ++) {

if (! PIR2bits.BCLIF) {

break;

215 }

/* clear the bus collision flag */

PIR2bits.BCLIF = 0;

220 #ifdef START_DELAY

Delay10TCYx(START_DELAY);

#endif

I2C_IDLE ();

225
/* try the start condition again */

SSPCON2bits.SEN = 1;

}

/* if we couldn ’t successfully grab hold of the bus an I2C_ERR_BCLIF will

230 * be passed up from here

*/

I2C_IDLE ();

56

return ERR_NONE;

235 }

/*

* FUNCTION:

* CP2_StopI2C

240 *

* DESCRIPTION:

* Sends an I2C stop condition

*

* PARAMETERS:

245 * none

*

* RETURNS:

* 0 if the stop condition succeeded

* I2C error code otherwise

250 */

char CP2_StopI2C(void)

{

/* initiate stop condition - automatically cleared by hardware */

SSPCON2bits.PEN = 1;

255 I2C_IDLE ();

return ERR_NONE;

}

260 /*

* FUNCTION:

* CP2_RestartI2C

*

* DESCRIPTION:

265 * Sends an I2C restart condition

*

* PARAMETERS:

* none

*

270 * RETURNS:

* 0 if the restart condition succeeded

* I2C error code otherwise

*/

char CP2_RestartI2C(void)

275 {

/* initiate restart condition - cleared by hardware */

SSPCON2bits.RSEN = 1;

I2C_IDLE ();

280 return ERR_NONE;

}

/*

* FUNCTION:

285 * CP2_AckI2C

*

* DESCRIPTION:

* Sends a master recieve acknowledge on the I2C bus

*

290 * PARAMETERS:

* none

57

*

* RETURNS:

* 0 if the acknowledge succeeded

295 * I2C error code otherwise

*/

char CP2_AckI2C(void)

{

/* enable acknowledge bit (active low) */

300 SSPCON2bits.ACKDT = 0;

/* initiate the acknowledge sequence on I2C */

SSPCON2bits.ACKEN = 1;

I2C_IDLE ();

305
return ERR_NONE;

}

/*

310 * FUNCTION:

* CP2_NoAckI2C

*

* DESCRIPTION:

* Sends a noack on the I2C bus

315 *

* PARAMETERS:

* none

*

* RETURNS:

320 * 0 if the noack succeeded

* I2C error code otherwise

*/

char CP2_NoAckI2C(void)

{

325 /* set the acknowledge bit */

SSPCON2bits.ACKDT = 1;

/* initiate the acknowledge sequence */

SSPCON2bits.ACKEN = 1;

330 I2C_IDLE ();

return ERR_NONE;

}

335 /*

* FUNCTION:

* CP2_CheckAckI2C

*

* DESCRIPTION:

340 * Checks for an acknowledge from the slave

*

* PARAMETERS:

* void

*

345 * RETURNS:

* 0 if the slave acknowledged

* I2C error code otherwise

*/

char CP2_CheckAckI2C(void)

58

350 {

if (SSPCON2bits.ACKSTAT) {

return ERR_I2C_NO_ACK;

}

355 /* this idle isn ’t really necessary */

I2C_IDLE ();

return ERR_NONE;

}

360
/*

* FUNCTION:

* CP2_AckPollI2C

*

365 * DESCRIPTION:

* Polls a device until it acknowledges

*

* PARAMETERS:

* unsigned char dev

370 * The device address to poll

*

* RETURNS:

* 0 when the device acknowledges

* I2C error code otherwise

375 */

char CP2_AckPollI2C(unsigned char dev)

{

unsigned int idlectr;

380 /* we expect errors to occur in here - ignore everything except bus

* collisions */

if (ERR_I2C_BCLIF == CP2_StartI2C ()) {

return ERR_I2C_BCLIF;

}

385
for (idlectr = 0; idlectr < ACK_RETRY; idlectr ++) {

if (ERR_I2C_BCLIF == CP2_WriteI2C(dev)) {

return ERR_I2C_BCLIF;

}

390
/* check for an acknowledge */

if (!(SSPCON2bits.ACKSTAT)) {

CP2_StopI2C ();

return ERR_NONE;

395 }

/* restart and try again */

if (ERR_I2C_BCLIF == CP2_RestartI2C ()) {

return ERR_I2C_BCLIF;

400 }

#ifdef ACK_DELAY

Delay10TCYx(ACK_DELAY);

#endif

405 }

/* the device wouldn ’t respond */

59

return ERR_I2C_ACK_RETRY;

}

410
/*

* FUNCTION:

* CP2_WriteI2C

*

415 * DESCRIPTION:

* Writes the given byte to the I2C bus

*

* PARAMETERS:

* unsigned char data

420 * The data byte to write to I2C

*

* RETURNS:

* ERR_NONE on success

* I2C error code otherwise

425 */

char CP2_WriteI2C(unsigned char data)

{

unsigned int idlectr;

430 /* put the char into the outgoing buffer */

SSPBUF = data;

for (idlectr = 0; idlectr < WRITE_RETRY; idlectr ++) {

if (!(SSPSTATbits.BF)) {

435 /* the buffer has flushed */

I2C_IDLE ();

return ERR_NONE;

}

#ifdef WRITE_DELAY

440 Delay10TCYx(WRITE_DELAY);

#endif

}

return ERR_I2C_BF;

445 }

/*

* FUNCTION:

* CP2_ReadI2C

450 *

* DESCRIPTION:

* Reads a byte from I2C and puts it in the given char*

*

* PARAMETERS:

455 * unsigned char *data

* Pointer to a char to fill with data

*

* RETURNS:

* 0 on success

460 * I2C error code otherwise. On error , *data is also set to 0

*/

char CP2_ReadI2C(unsigned char *data)

{

unsigned int idlectr;

465

60

/* reset the data being passed in */

*data =0;

/* turn on the recieve enable bit */

470 SSPCON2bits.RCEN = 1;

for (idlectr = 0; idlectr < READ_RETRY; idlectr ++) {

/* when SSPSTATbits.BF is empty , the read is complete */

if (SSPSTATbits.BF) {

475 *data = SSPBUF;

I2C_IDLE ();

return ERR_NONE;

}

480 #ifdef READ_DELAY

Delay10TCYx(READ_DELAY);

#endif

}

485 return ERR_I2C_READ_TIMEOUT;

}

/*

* FUNCTION:

490 * readFromSlave

*

* DESCRIPTION:

* Reads a given number of bytes from a device

*

495 * PARAMETERS:

* unsigned char address

* Device address to read from

*

* int readLength

500 * Number of bytes to read

*

* unsigned char *buffer

* Buffer to put the read bytes into. This must be at least readLength

* long.

505 *

* RETURNS:

* ERR_NONE on success

* I2C error code otherwise

*/

510 char readFromSlave(unsigned char address , int readLength , unsigned char *buffer)

{

unsigned int idlectr;

unsigned char *cptr;

int i;

515 char err;

if ((err = CP2_StartI2C ()) < 0) {

return err;

}

520
if ((err = CP2_WriteI2C(address | I2C_READ)) < 0) {

CP2_StopI2C ();

return err;

61

}

525
// I2C capacitance causes this to return error code incorrectly

// if(err = CP2_CheckAckI2C ()) {

// CP2_StopI2C ();

// return err;

530 // }

for (i = 0; i < readLength; i++) {

cptr = buffer + i;

if ((err = CP2_ReadI2C(cptr)) < 0) {

535 return err;

}

if (i != readLength - 1) {

if ((err = CP2_AckI2C ()) < 0) {

540 return err;

}

}

}

CP2_StopI2C ();

545
return err;

}

/*

550 * FUNCTION:

* writeToSlave

*

* DESCRIPTION:

* Writes a given number of bytes to a device

555 *

* PARAMETERS:

* unsigned char address

* Device address to write to

*

560 * unsigned char data[]

* Buffer to write from. This must be at least dataLength long.

*

* int dataLength

* Number of bytes to write

565 *

* RETURNS:

* 0 on success

* I2C error code otherwise

*/

570 char writeToSlave(unsigned char address , unsigned char data[], int dataLength)

{

int index;

if ((err = CP2_StartI2C ()) < 0) {

575 return err;

}

if ((err = CP2_WriteI2C(address | I2C_WRITE)) < 0) {

CP2_StopI2C ();

return err;

580 }

if ((err = CP2_CheckAckI2C ()) < 0) {

62

CP2_StopI2C ();

return err;

}

585
for (index = 0; index < dataLength; index ++) {

if ((err = CP2_WriteI2C(data[index])) < 0) {

CP2_StopI2C ();

return err;

590 }

// CheckACK?

}

CP2_StopI2C ();

595
return err;

}

600 /*

* FUNCTION:

* transferI2C

*

* DESCRIPTION:

605 * transferI2C () implements our generic I2C communication protocol

* it consists of 2 steps

* 1: the master writes a single byte command to the slave , along with any

* data associated with that command (up to 256 bytes , currently).

* the data is stored in buf , and is txlength long

610 * 2: the master reads from the slave. first byte read is the length of the

* complete i2c transaction , followed by 1 or more bytes of data

*

* comment: jfarkas and cnoe discussion leads us to the decision to implement

* transferI2C separately from read/writeToSlave. the reason is that the command

615 * byte must be the first byte of the write transaction to the slave , followed

* immediately by the transaction data (if any). writeToSlave doesn ’t allow for

* this without two separate transactions , which won ’t work with our IPC.

*

* PARAMETERS:

620 * unsigned char addr

* Device address to write to

*

* unsigned char command

* Device command. Determines what is read/written

625 *

* RETURNS:

* 0 on success

* I2C error code otherwise

*/

630 int transferI2C(unsigned char addr , unsigned char command)

{

unsigned char txLength , rxLength;

unsigned char i;

unsigned char *destBuffer;

635
// clear RX buffer

memset(i2cRxBuffer , 0x00 , IPC_BUF_MAX);

if (command & 0x80) {

63

640 txLength = payloadCommandTable[command & 0x0F][0];

} else {

txLength = commCommandTable[command][0];

}

645 /* first , write the command + command data to the slave */

if ((err = CP2_StartI2C ()) < 0) {

return err;

}

650 if ((err = CP2_WriteI2C(addr | I2C_WRITE)) < 0) {

CP2_StopI2C ();

return err;

}

655 if ((err = CP2_CheckAckI2C ()) < 0) {

CP2_StopI2C ();

return err;

}

660 if ((err = CP2_WriteI2C(command)) < 0) { /* command byte */

CP2_StopI2C ();

return err;

}

665 if ((err = CP2_CheckAckI2C ()) < 0) {

CP2_StopI2C ();

return err;

}

670 for (i = 0; i < txLength; i++) {

if ((err = CP2_WriteI2C(i2cTxBuffer[i])) < 0) {

CP2_StopI2C ();

return err;

}

675 // if(i=CP2_CheckAckI2C ())

// return i;

}

CP2_StopI2C ();

680 // read back

if ((err = CP2_StartI2C ()) < 0) {

CP2_StopI2C ();

return err;

}

685
if ((err = CP2_WriteI2C(addr | I2C_READ)) < 0) {

CP2_StopI2C ();

return err;

}

690
if ((err = CP2_CheckAckI2C ()) < 0) {

CP2_StopI2C ();

return err;

}

695
/* XXX: what happens if we issue a stop condition while the slave is still

* transferring? Will the slave pick up on the stop condition and stop , or

64

* will it keep trying to send data?

*/

700 if (!(err = CP2_ReadI2C (& rxLength))) {

if (rxLength > 0 && rxLength <= IPC_BUF_MAX) {

if ((err = CP2_AckI2C ()) < 0) {

CP2_StopI2C ();

return err;

705 }

for (i = 0; i < rxLength; i++) {

if ((err = CP2_ReadI2C(i2cRxBuffer + i)) < 0) {

CP2_StopI2C ();

710 return err;

}

if (i != rxLength - 1) {

if ((err = CP2_AckI2C ()) < 0) {

715 CP2_StopI2C ();

return err;

}

}

}

720 }

} else {

CP2_StopI2C ();

return err;

}

725
CP2_NoAckI2C ();

CP2_StopI2C ();

return ERR_NONE;

730 }

7.8 I2C Slave Code

Note: Most of this design is credited to Chris Noe

unsigned char i2cActivityDetect;

unsigned char i2cCommand; // Last I2C command recv ’d

unsigned char commandReceived; // Have we received a command?

static unsigned char i2cBufferIndex; // Index into current I2C buffer

5 static unsigned char i;

void i2cISR(void) {

unsigned char data;

10 // Record that we ’ve received an i2c request

i2cActivityDetect = TRUE;

// Examine S, RW , DA and BF to determine I2C state

switch (SSPSTAT & 0x2D) {

15 // --

// State 1: Master Write , previous byte was address

// --

65

// S = 1, RW = 0, DA = 0, BF = 1

case 0x09:

20 i2cBufferIndex = 0; // Reset buffer index

i2cCommand = 0; // Reset last command

commandReceived = 0; // Reset cmd recvd

i = 0; // Reset loop iterator

sendingSnap=NULL;

25 data = SSPBUF; // Dummy read SSPBUF to clear BF

break;

// --

// State 2: Master Write , previous byte was data

30 // S = 1, RW = 0, DA = 1, BF = 1

// --

case 0x29:

/* Store command byte separately from data */

if (commandReceived) {

35 i2cRxBuffer[i2cBufferIndex ++] = SSPBUF;

} else {

commandReceived = TRUE; // Command received

i2cCommand = SSPBUF; // Store command

}

40 break;

// --

// State 3: Master Read , previous byte was address

// S = 1, RW = 1, DA = 0, BF = 0

45 // --

// Description: Return length of command data

// --

case 0x0C:

switch (i2cCommand) {

50 case IPC_PAYLOAD_ROTATE:

data=IPC_PAYLOAD_ROTATE_RX;

break;

default:

break;

55 }

while (SSPSTATbits.BF) /* Wait for xmit buffer to empty */

{ }

60 SSPBUF = data; /* Buffer next byte */

break;

// --

// State 4: Master Read , previous byte was data

65 // S = 1, RW = 1, DA = 1, BF = 0

// --

case 0x2C:

/* Return command data , if any */

switch (i2cCommand) {

70 case IPC_PAYLOAD_ROTATE:

data=NO_DATA_FILLER;

break;

default:

break;

75 }

66

while (SSPSTATbits.BF) /* Wait for xmit buffer to empty */

{ /* XXX: need to add timeout */ }

80 SSPBUF = data; /* Buffer next byte */

break;

// --

// State 5: Master NACK

85 // S = 1, RW = 0, DA = 1, BF = 0

// --

case 0x28:

i2cCommand = 0; // Reset command

commandReceived = 0; // Reset cmd recvd

90 i2cBufferIndex = 0; // Reset index

i = 0; // Reset loop iterator

break;

}

95 /* Release SCL to free the bus */

SSPCON1bits.CKP = 1;

}

67

Bibliography

[1] Heidt, H., Puig-Suari, J., Moore, A.S., Nakasuka, S., Twiggs, R.J., CubeSat: A New
Generation of Picosatellite for Education and Industry LowCost Space Experimenta-
tion”, Proceedings of the Utah State University Small Satellite Conference, Logan,
UT, August 2001, pp. 1-2, 6.

[2] Schaffner, Jake A, “The Electronic System Design, Analysis, Integration, and Con-
struction of the Cal Poly State University CP1 CubeSat”. 16th AIAA/USU Conference
on Small Satellites

[3] Noe, Chris. “Design and Implementation of the Communications Subsystem for the
Cal Poly CP2 Cubesat Project” Cal Poly Senior Project.

[4] Day, Chris. “The Design of an Efficient, Elegant, and Cubic Pico-Satellite Electronics
System” Cal Poly Masters Thesis

[5] Toorian, Armen. Personal interview. June 13, 2005.

68

