COMPASS-1

Qualification Review 26.06.2006

11

Content

- >Objectives
- >Payloads
- Status of Development & Testing
- Launch Qualification
- Launch Preparations

Objectives

Project Objectives

- Insight into the system engineering process and team dynamics
- Better understanding of subjects (technical and management)
- Collaboration and contacts with industry, universities and other Cubesat groups

Mission Objectives

- Remote Sensing with color camera
- GPS validation
- Technology demonstration:
 - Extensive use of COTS components
 - Fast UHF communication downlink
 - Active magnetic attitude control
 - Lithium-Polymer batteries for power storage

Remote Sensing

- On request from ground station, the VGA (640x480 pixels) camera (model OV7648FB) will capture color images of the earth below.
- Calculated coverage is a rectangle (ratio 4:3) within a circular view field of 572km diameter (nadir)

Phoenix GPS Validation

- Implementation of Phoenix GPS into picosatellite
- Measurement of GPS raw data over full orbit

Qualification Review

СОП

Satellites' Housekeeping Measurements

The satellite periodically transmits a beacon containing critical housekeeping data. Further extensive measurement data can be downloaded on request.

Temperature

- 1 sensor on each side panel
- Sensors on all subsystem boards, 3 sensors in battery box

Voltage and current

- Monitoring of solar cell output
- Measuring of 3V3 and 5V regulators

Others

- ADCS flight data
- Subsystem information

• etc.

EPS	COM	CDHS	ADCS	Raw Data									
Electrical Pow	er System												
-System Info	rmation		Solar C	Solar Cells									
Status of EPS Soft Reset Watch Dog Ti Soft Reset Co Powersafe 1 C Powersafe 2 C SingleE vent C SingleE vent C Heater Mode Heater Counte	mer Reset unter Sounter Sounter ounter 3V3 ounter 5V	NORMAL NO 0	Solar Cell Solar Cell Solar Cell Solar Cell Solar Cell	ls Side 2 (right) Is Side 3 (back) Is Side 4 (left) Is Side 5 (top) Is Side 6 (bottom)	0.937 0 0.942 0 0.937 0 0.937 0 0.942 0 0 0.942 0	Volt mA Volt mA Volt mA Volt mA Volt mA	48 48 0 64 48 112 0 80 48 32 0 32 48 112 0 0 48 80 0 0 48 80 0 0 48 80 0 48						
Temperature	es		Batterie	\$									
BattBox Senso BattBox Senso BattBox Senso	or 1 or 2 or 3	23 °C 23 °C 23 °C	Battery V C	oltage Current	3,719 213	Volt mA	190 32 192	<u>4</u> 2					
Battery Box Te ADC1 ADC2 ADC3	emperature	22 °C 22 °C 23 °C 24,5 °C	Loads - Heater Ci EPS Syst 3V3 Currer 5V Currer 5V (Perm Unregula	urrent em Current ent nt anent) Current ted Line Current	0 60 8 3 37 0	mA mA mA mA mA mA	0 0 9 112 1 96 0 176 0 48 5 240						

Cubesat Standard

The CubeSat standard has been defined in 1999 by Prof. Twiggs of Stanford University in collaboration with CalPoly University.

The concept was chosen for COMPASS-1 in order to:

Qualification Review

Qualification Review

Qualification Review

Qualification Review

Satellite System Architecture

26.06.2006

compa

4

ADCS Requirements

- Detumble the spacecraft after launch interface separation and antenna deployment
- Determine the dynamic state of the spacecraft using on-board sensor measurements
- Maintain nadir-pointing attitude
- Gather and store housekeeping and engineering data
- Gather GPS telemetry data

comp

ADCS Concept

26.06.2006

Qualification Review

ADCS Development Status

Hardware:

- FM & FSM MCU Board & Magnetometer are ready
- FM Magnetorquer ready
- SunSensor hardware in progress

Software:

- Algorithms are encoded
- Low level hardware drivers are encoded

ADCS Outlook

Action Items:

- Calibration of Magnetometer
- Integration (software) of Phoenix GPS
- Update of simulation and parameters
- Programming and Calibration of SunSensors
- Verification of low-level hardware drivers
- Implementation of Watch-Dog Timer

Optional Upgrades:

• none

COM Requirements

- 2-way noncoherent communication
- Use amateur frequencies (144MHz, 435MHz)
- Receive commands and data from ground
- Send data packets with 4k8 (9k6) baud rate
- Periodically send beacon

COM Concept

- The backbone of the communication system is the rf transceiver that modulates the low frequency signals (FSK and CW) onto the designated amateur carrier frequency and vice versa.
- The antennas are adjusted to the designated rf wave lengths
- Reception of DTMF and FSK modulation is realized through ICs.

Communication Architecture

Uplink (DTMF)

- Set time
- Upload OLE
- Update LQR
- Request image [new or stored]
- Request HK, XHK
- Request GPS Data
- Switch ADCS mode [Control, Safe, GPS, Detumbling]
- * Switch TX on/off
 - * Resend packet [start, number]

Downlink (CW beacon)

- beacon data

Downlink (FSK)

- Housekeeping (256 Bytes)
- extended HK (300 Kbytes)
- GPS data (300 Kbytes)
- Image (300 Kbytes)

Qualification Review

COM Development Status

Hardware:

- EM Board is functionally working (4k8)
- FM/FSM in progress
- EM Transceiver ready
- FM Transceiver in progress
- FM Antennas ready

Software:

- Hardware drivers are coded
- System-level communication is ready

COM Outlook

Action Items:

- Calibration of COM FM to FM Transceiver
- Implementation of software on system level
- Implementation of Watch-Dog Timer

Optional Upgrades:

• Improve modem baud rate from 4k8 to 9k6

CDHS Requirements

- Receive the tasks from ground station via COM system
- Execute mission tasks and store payload data
- Gather and store housekeeping data

CDHS Concept

Qualification Review

Internal Communication Architecture

Qualification Review

compa

CDHS Development Status

Hardware:

- EM, FM and FSM ready
- Payload (Cam) interface ready

Software:

• Software is encoded and tested

Qualification Review

CDHS Outlook

Action Items:

• Implementation of Watch-Dog Timer

Optional Upgrades:

- Implementation of 'task scheduler'
- Error detection and correction
- Image compression

EPS/TCS Requirements

- Supply bus voltages of 3.3 and 5 Volt
- Allow current flows up to 2 Ampere
- Monitor current, voltage and temperatures
- Cut-off loads when battery is low (Powersafe)
- Maintain components within their temperature limits

EPS/TCS Concept

compas

Ч

EPS/TCS Development Status

Hardware:

- EM, FM & FSM ready
- EM Battery Box ready and tested
- EM and FM solar cells integrated

Software:

- EM and FM software coded and tested
- WatchDog timer integrated and tested

EPS/TCS Outlook

Action Items:

• Build FM battery box

Optional Upgrades:

- Fix Single-Event Latch-Ups
- Control heater mode through ground commands

comp

STR Requirements

- Anodized 6061 aluminum frame
- Cubic shaped according to Cubesat specification
- Kill Switch and Remove before Flight Mechanism
- Antenna Deployment
- Stringent center of mass requirements and optimized inertial moments

STR Development Status

Structure:

- EM ready
- FM structure ready
- FM sides ready
- FM parts in production

Mechanisms:

All mechanisms developed and successfully tested

STR Outlook

Action Items:

- Integration of mechanisms on side 1
- Integration of antennas on side 1

Optional Upgrades:

• none

ADCS Functional Testing

- A GPS stand-alone test has been carried out
- Coil driver test and tuning
- Verification of orbit propagation algorithm and reference vectors
- Functional demonstration of Actuators

Qualification Review

CDHS Functional Testing

- Through the Access Port Interface, virtually all commands and tasks can be tested on ground
- The data transfer and subsystem communication was examined and verified from low hardware level to software level

EPS/TCS Functional Testing

- Correct battery charging through solar cells was verified
- Recovery of frozen (-18°C) and deep discharged battery (<1 Volt) was verified
- Functionality of Heater system was tested
- Measurements (temperature, current and voltage) of EPS/TCS were verified

COM Functional Testing

- Correct reception and interpretation of DTMF commands was verified
- Sending of FM packets was verified

STR Functional Testing

- Antenna deployment was verified
- Kill Switch and RbF Switch were verified
- Vibration tests on component level were carried out to confirm the structural FEM analysis

Satellite EM Integration

- The EM of COMPASS-1 for the conduction of the qualification tests was made up by the EM subsystems and mass dummies.
- A list of necessary modifications that became evident during assembly was produced and implemented in the development of the FM.

Qualification Review

Vibration Test

- Qualification Levels (DNEPR, UTIAS) have been used for EM
- Resonance frequencies should determined and satellite was tested for survivability

Vibration Test Results

- Satellite survived without malfunctions
- Resonance frequencies for all axis are well above 35 Hz (as required by NASA)

сотр

Thermal Test

• A modified thermal test was conducted to compare results from numerical analysis with real measurements

CO

Exterior of Compass1 (Thermal Desktop 4.7)

26.06.2006

Interior of Compass1 (Thermal Desktop 4.7)

Vacuum Chamber FH-Aachen

20.00.2000

Qualification Review

Vacuum Chamber in Thermal Desktop

Qualification Review

Transient results after 40 minutes(Exterior)

Transient results after 40 minutes (Interior)

Physical parameters of the Thermal Desktop Satellite Model

Material	Conductivity	Density <u>kg</u>	Specific Heat	J
	m·K	1000000000000000000000000000000000000	Specific Heat	kg · K

Aluminium 6061 T4	154	2700	896
A1 6061 T651	167	2700	896
Ероху	0.49	1300	970
Copper	401	8900	380
PEEK	0.25	1320	2160
PIFE	0.25	2180	2000
POM Copolymer	0.31	1410	1470
Solar cells	40	5800	350

|--|

All Electronic Boards		PIFE
Heater and Coils		Copper
Frame; Comboard coating; Board h	oldings; Battery- box	Aluminium 6061 T651
Panels		Aluminium 6061 T4
Battery and Battery- box filling		Epoxy
26.06.2006	Qualification Review	COMPASS) 4

Optical parameters of the Thermal Desktop Satellite Model

Element	a coeff	ficient /	ε coefficient /				
Battery box	0.15	0.18					
Panel	0.59	0.79					
Electronic boards	0.72	0.94					
T-Pod Frame	0.15		0.095				
Magnet coils	0.27		0.94				
Sensors	0.93		0.92				
Element		Material / Source					
Battery box		Rough polishe	d aluminium				
Panel		Black anodised	l aluminium				
Electronic boards		Electronic board paint					
Solar cell frame		Estimated					
T-Pod Frame		Polished aluminium					
Magnet coils		Electronic board paint for $arepsilon$; $lpha ightarrow$ copper					
Sensors		Polyethylene					

DLR

Temperature(i=90°) : Panel [side 5(top)]

Temperature(sun synchronious, day night border) Panel (sun-side;shadow-side)

Temperature(sun synchronious, day night border) Battery

1 \N/ bootor power during the whole time

Launch Preparations Roadmap

- o Prepare Mission Operations Facility
- o Action Item List (FM and Acceptance Tests)
- o Sign MoU

comp

Launch Readiness Time Schedule

Duration	March	April	May	June	July .	August	September	October	November	December	January	February	March	April	May	June	July	August	September
1 day					1. Paymen	t			8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8										
1 day													2.	Payment					
67 days				-															
2 days		Vacuum	Testing																
2 days	Ч	libration Te	sting																
1 day				μı	hermal Vacu	um													
0 days				Ý	QR				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2										
90 days									Modifica	tion / Calib	ration EM								
3 days									Asser	nbly FM and	I FSM								
5 days									H										
1 day									H Vacuu	ım Testing									
2 days									Vibra	tion Testin	J								
5 days									The	rmal Vacuu	m								
0 days									🐺 FRI	2			1						
1 day													L-3 mon	ths: Delive	y of COMP.	ASS-1 FM a	and Handlin	, g Procedui	es
1 day														L-1	.5 months:	Acceptan	e Test by S	SFL	
1 day															L-1 mont	ths: Delive	ry of integr	ated Launc	h Tube
1 day																L=0: Lau	inch		

Backup Slides

Mission Modes

Mission Sequence Schedule

Development Costs

Qualification Review