DESIGNING ON BOARD COMPUTER AND
PAYLOAD FOR THE AAU CUBESAT

Thomas Bruun Clausen, Allan Hedegaard,
Kristian Budde Rasmussen,
Rasmus Lowenstein Olsen, Jgrgen Lundkvist,
Peter Egtoft Nielsen

Abstract: This article describes the design of the On Board Computer (OBC) and
payload camera for the AAU Cubesat due to launch November 2002.

The OBC was designed to provide a platform for the Control and Data Handling
(CDH) program and to interface the sattelite units to CDH. The OBC was based
on the Siemens C161PI 16-bit microprocessor utilizing 4MB of external RAM.
The OBC was designed to use both a PROM and a flash memory for the boot-up
software, enabling the use of a fail safe mode. This lowered the chances of faults
during boot-up and enabled the possiblity of uploading new software after launch
of the satellite. Due to the environment in space and the constrains of the satellite,
different measures had to be taken when the system was designed.

To ensure robustness of the OBC, components were chosen with industrial
specifications, small packages and low powerconsumptions enabling the OBC to
operate in an extended temperaturerange using minimal resources. The camera
unit was developed by the company Devitech and interfaced via the internal bus-
system to the MCU. To ensure the correct timing when taking pictures, a hardware
unit allowing Direct Memory Access (DMA) was developed. This unit handled the
control of the camera and the storing of pictures in RAM without using the MCU.
The interface to the external subsystems on the Cubesat was designed around the
I2C-bus standard. A special protocol for errordetection and communication was
designed. A hamming code algorithm was designed to protect vulnerable data from
being corrupted due to e.g. radiation.

A design draft for a suitable camera lens was made. The OBC and camera design
and specifications was completed and a prototype of the OBC was build for testing
hardware and software.

1. INTRODUCTION

Over the last decade space has become more
and more commercial, and a lot of countries
can now call themselves space nations including
Denmark. In the year 1999 Denmark launched
her first satellite Qrsted, designed to measure the
magnetic field around the earth. @rsted has been
a tremendous success for DSRI (Danish Space
Research Institute, [DSRI (2001)]) and is still
transmitting valuable data to the earth, now more
than 1000 days after it was launched. DSRI is

currently supporting four Danish satellite projects
[Rummet (2001)]:

o Qrsted II, designed to relieve the aging
QDrsted satellite.

e Rgmer, a new satellite designed to measure
oscillation of nearby stars.

e Cubesat, a concept for small satellites speci-
fied by Stanford University.

DTU (Danish Technical University) and AAU
(AAlborg University) are currently working on
two different satellites based on the ”Cubesat”
concept. The dimension of a Cubesat has to be

10 x 10 x 10cm with a maximum weight of 1 kg.
The Cubesat concept is designed to make space
available for “everybody”. Until now space has
only been accessible to large institutions and com-
panies. With the Cubesat concept small compa-
nies or even individuals have gained access to
space.

The main mission of the AAU Cubesat, due to
launch november 2002, is to take pictures of Den-
mark and publish them on the internet. It will
also be possible for the public to order a picture
of a specific area of Denmark. The idea is to
increase the interest in space applications amongst
the Danish public and industry.

A secondary mission has been implemented on
the AAU Cubesat. This mission will be to point
the camera towards the stars, in order to measure
changes in the brightness of stars and detect new
ones.

The AAU Cubesat is designed through a col-
laboration of student groups from different insti-
tutes at AAU, ranging from 5th semester to 9th
semester [AAU (2001)].

1.1 The purpose of the project

The purpose of the project was to design an
OBC and a camera payload for the AAU cubesat.
Designing hardware for a space applicable unit
requires a lot of considerations that would not
normally be encountered when designing hard-
ware. This is due to the extreme environment for
which reason considerations such as temperature
ratings, exposure to radiation, heat transfer, ro-
bustness of components and redundancy should
be taken into account.

The purpose of the OBC was to provide a plat-
form for the Control and Data Handling (CDH),
a supervisor program that controls the tasks
of the satellite, and to interface the satellite
units to CDH. These units were: PSU (Power
Supply Unit), ACS (Attitude Control System),
COM (Communication unit) and Payload (cam-
era unit). This article describes the main concider-
ations and solutions chosen during the project.

2. DESIGNING THE OBC AND PAYLOAD

The design was split into three parts: The Hard-
ware and Software Architecture and the camera
payload. Even though the parts were connected
it was possible to work in groups designing each
part seperatly. All three parts will be described in
the following.

2.1 Hardware architecture

The AAU CubeSat was made up of several units.
Figure 1 shows these and the internal architecture
of the On Board Computer (OBC). The OBC
hardware consisted of the following units:

An MCU

PROM modules

Flash memory modules

RAM modules

Adress decoding logic

Camera control and DMA logic

These components will be described in the follow-
ing.

The main MCU was selected to be a C161PL.
This is a 8051 based MCU, with a 16 bit Cen-
tral Processing Unit (CPU). It had a 24 bit ad-
dress space that made it possible to address up
to 16MB of memory. Beside a low power con-
sumption (~10mW/MHz) it had several usefull
features including a Real Time Clock (RTC), Ana-
log/Digital converters (ADC’s), timers, flexible
power management and several watchdogs pre-
venting that the program stalled permanently.
The memory was designed to consist of 256kb Pro-
grammable Read Only Memory (PROM) which
contained the basic program. A PROM memory
was used, because it is very robust to radiation
and in a wide temperature range. The memory
also consisted of a 256kb flash memory which were
able to hold new updated software. This type of
memory is not as reliable as PROM, but the MCU
was able to rewrite it. Finally the OBC had 4MB
of RAM for storing the image from the camera
and for holding the MCU stack.

The control logic created chip select (CS) and
read/write (R/W) signals to the memory from
either the MCU or the camera. The logic was
designed to work in two different modes. The first
mode was during normal operation and the second
mode was during camera DMA.

During camera DMA, the MCU had to be discon-
nected from the address and data bus. This was
done by software, since the C161PI did not offer
an opportunity to share these busses. Software
interacting with the camera DMA was therefore
set up to run from the MCU’s internal RAM.
Robustness was introduced e.g. in following ways:
An oscillator watchdog and software watchdogs
was activated on the MCU. A Flash Memory
was implemented to allow the uploading of new
software after launch (e.g. if programerrors were
detected). The power to the logic was also con-
nected to the camera, so in case the camera DMA
malfunctioned, it could be turned off to prevent it
from blocking the databus.

Cubesat hardware architechture

|On Board Computer (OBC)

Communication Payload PSU ACS
J A
o L P, ' '
I . T CamcConwolines—— |
\ | FPGA ¥ R
| L +» RAM | | Camera Control Logic | |
' cisip | b | }
Address/
RS232— P - »| Flash ROM \ 4 |
‘(MCU Data bus Control bus 2——* | ‘
\ y
‘ Ls PROM | Decoding Logic ‘ |
\ \ (DCL) ||
| Y S ||
| Control bus }

Fig. 1. Hardware architecture of Cubesat

2.1.1. Internal interfaces All units inside the
OBC were interfaced by four bus systems: An
address and a data bus connecting memory to the
MCU and two control busses controlling which
memory chip has acces to the data bus. One
from MCU to the Decoding Logic (DCL) and one
from Camera Control Logic (CCL) to memory.
See figure 1.

2.1.2. External hardware interfaces The con-
nection between OBC and all the peripherals of
the CubeSat was made with an I2C bus system.
For debugging and programming flash memory or
PROM, a serial interface was made, so that the
OBC could be interfaced to a PC. By utilizing
a bootstrap loading mechanism, it was possible
to use the already known development software,
Keil.

An external control bus to the camera was needed
because this device required a Direct Memory
Access (DMA) to RAM, due to its high speed
data transfer rate. It was therefore also connected
directly to the internal data bus of the OBC.

2.1.3. DMA for the camera The camera worked
using a rolling shutter, and therefore delivers
streaming data on the bus. A clockfrequency at
12,5MHz was used when taking a picture, which
ment that new data was availible on the data bus
every 80ns. This required the implementation of a
DMA module to fetch the data, because the MCU
was not fast. The software used to activate the
DMA channel, was designed to run from internal
RAM on the MCU, because the MCU did not
allow hardware bus arbitration.

When the software was activated, it would put
the MCU both in idle and high impedance mode.
An interrupt signal, created by the DMA when

done transfering data, would wake up the MCU
from idle mode. In this way the camera DMA was
transparent to CDH.

The DMA was made by using a 21 bit counter
to hold the RAM address. The first 18 bits were
used directly to address RAM cells, and the last
3 bits to create 8 chipselect (C'S) signals. The
chip selects made it possible to contact all needed
RAM devices. Figure 2 shows the implementation
of this. The address counter was reset and enabled
by the MCU before activating the DMA. This was
done by first pulsing the reset pin, and then pull
the Output Enable pin low on the counter.

—> Finish
CCLR — reset
ccE— = _Im‘m‘m\ dscgger 8T
Enable
20 bit decoder
counter
18 bit address
(A1-A18)
ACC—3cu

Fig. 2. DMA address and chipselect creation

The size of the picture from the camera is
1280x1024x10bit which makes it require 2,5MB of
RAM for storage. Since each RAM holds 512kB,
the image requires 5 RAM block. The 6th chip
select, has therefore been used as an interrupt
signal, to awaken the MCU from idle mode.

Since a 40ns (tacc) delay exists in the counters,
the clock pulse must go high 40ns before address
change was expected from RAM. To do this a
signal called ACC (Address Counter Clock) was
generated, by delaying a signal provided from
the camera, called HCLK (Horizontal Clock).
This camera generates and synchronizes the data

stream. Figure 3 illustrates the logic.

Fig. 3. Gate logic for creating R/W and ACC
signals

By delaying the ACC further 30ns the HCLK
signal was also used for pulsing R/W signals to
the RAM (t.q) devices as required when data
should be written to the RAM. HCLK has a
period of 80ns (fgcrx = 12,5MHz), and a
duty cycle of 50%, which means that the low
period is 40ns. RAM requires a low period of 50ns
(twp), the R/W signal was therefore generated
by shortening the HCLK. This was achieved by
creating a delayed HCLK and then AND it with a
non-delayed HCLK. The required timing is shown
in figure 4.

HCLK

A

B, ACC

Done by
finish or VCLK signal

C.RW |

MCLK

oo

Fig. 4. Gate logic for creating R/W and ACC
signals

Furtermore the combination of a flip/flop and
a OR gate was used to turn off the logic, by
holding the input high on the OR gate. This was
implemented to ensure that noise on the HCLK
input did not trigger a write access. When the
rolling shutter of the camera makes a lineshift
(vertical shift), the camera holds the signal VCLK
(Vertical Clock) high. This also disables the write
mechanism on RAM.

2.2 Software architecture

The designed software was made to boot-up and
afterwards serve the CDH. Figure 5 shows the
software architecture of the OBC.

As seen on the figure, the CDH could execute
different functions on the OBC. These functions
acted as hardware drivers for the CDH. By using
these drivers different tasks were made transpar-
ent to CDH. CDH was equiped with a simple
softwareinterface to different hardware functions.

Boot-up segence

'

CDH
Flash 12C Bus Measure Take Hamming
Memory Temp. Picture code

Fig. 5. Software architecture of CubeSat

The drivers and the Boot-up sequence is described
in the following:

2.2.1. CubeSat P>C-bus The peripheral bus was
selected as the I>C-bus standard [I2C (2001)].
Only two bus lines are required: A Serial Dataline
(SDA) and a Serial Clock Line (SCL). The two
wires, SDA and SCL, carry information between
the devices connected to the bus. A master (in
this case the MCU) is the device which initiates a
data transfer on the bus and generates the clock
signals to permit transfers. When this is done the
device addressed is considered a slave.

RAM/
ROM

CcoMm oBC 1 ’A
COM-DATABUS DATABUS

corn | e — = !

SCL Bl

PAYLOAD|

External
pPC

Fig. 6. I C-Bus structure

The Cubesat structure was designed to consist
internally of five different modules (COM, OBC,
ACS, PSU and Payload) as seen in figure 6. The
last module on figure 6 is an optional external PC
used for testing and simulation of the system.

Initialization of the I2C-bus: The I2C-bus was
configured, monitored and controlled by setting
and reading different internal registers: (ICCFG,
ICCON, ICST and CRTB) [MCU (2001)].

e ICCFG, I2C configuration register. This
register enabled the desired I2C bus ports.
The MCU had two complete I>C interfaces.
The register also set the bit rate for the bus.
I2C-Interface 1 on the I2C was used, with a
bitrate of 97.6 kb/s.

¢ ICCON, I2C control register. This register
controlled in which mode the MCU was set,
Master or slave. It also decided whether 7 or
10 bit addresses were used. The MCU was
set in master mode, and 7 bit addresses were
used.

e ICST, I2C status register This register con-
tained the current status of the I2C bus and
indicated if an interrupt was pending

e ICRTB, I2C transmit and receive buffer The
buffer contained the received data or the data
about to be send.

BC Protocol: A protocol was designed on top
of the I?C-bus. The complete protocol therefore
consisted of the following (ordered as it would be
transmitted):

Start, Address, R/W, Acknowledge bit, followed
by a header and checksum designed especially for
the cubesat, followed by the Data and a Stop bit.

Header: The header as shown on figure 7 con-
tained information about the length of the sent
data packages. It also contained a module number
used to describe either which module in the slave
was contacted or used as a specific command.

Header
I N N I I N

t Length L

In Bytes

Fig. 7. B C-header.

Module Number J

e Length: The first three bits of the header
determined how many data packages would
follow the header

e Module: The last 5 bits indicated a com-
mand or the device module number.

Checksum: The data package following the header
was an 8 bit CRC Checksum. The checksum was
calculated in the following way:

[FFh] — Z [DAT A] = [checksum] (1)

All the data packages and the header send in
one transmission were added together, the 8 bit
result of this calculation was then subtracted from
[FFh], this yielded the CRC checksum. The data
was checked in the following way:

[checksum)] + Z [DATA) =[FFh] (2)

The sum of received data were added with the
checksum. If the result was different from [FFh]
the data was corrupted and would be retransmit-
ted (see example in figure: 8).

Conducting housekeeping and controlling units:
A function was designed to collect housekeeping.
When a collection of housekeeping was initiated
the master were only to address a unit and set
the R/W condition to "Read”. The unit would
then deliver all its housekeeping data to the MCU.
Fach sensor on a unit was identified by the module
number transmitted in the header.

The function for collecting housekeeping was

SEND DATA RECIEVED DATA

FFR [11111111] (CRC) [11011101]
- +

[01101101] [01101101]
(DATA) + +
[10110101] [10110101]
(CRC) [11011101] (FFh) [11111111]
L] v
DATA OK

Fig. 8. Calculation of checksum

called I2CHousekeepingy().

When a unit was controlled from the MCU, the
MCU would have to send data along with the
address, header and checksum. In order to write
data to a unit the I2CWrite() function was used.
It was also possible to read data from a specific
sensor. In order to do this, the function I2CRead()
was used.

2.2.2. The Boot-up sequence One of the most
vital functions of the OBC is the Boot-up se-
quence. The purpose of the Boot-up sequence is
to configure the MCU and activate CDH. After
the activation of CDH the OBC was designed
to become a passive unit taking orders, like the
I12CWrite() or I2CHousekeeping() command, from
CDH. The boot sequence was to be carried out au-
tonomously, because during boot-up there would
be no intelligent control (CDH) and no commu-
nication between the earth and the satellite. If
the boot sequence failed and the OBC was not
prepared to deal with the fault by itself the satel-
lite could be lost. To ensure that software errors
could be corrected if detected after launch, it was
made possible to upload, boot up on and use new
software. The new software would be stored in the
on board flash memory. Data in flash memory can
be corrupted due to radiation. To ensure that the
critical boot software was not corrupted, the inter-
nal and very robust PROM module was used. This
module would hold the original and well tested
software used when the satellite was launched. In
this way the PROM provided the OBC with a fail
safe mode. If an error occurred during boot-up, us-
ing the new software the OBC had been designed
to automatically reboot and try to boot up using
the original software. This also worked the other
way around in case of the system trying to boot-
up using the original software. By implementing
this into the Boot-up sequence, the OBC could
deal with faults in one of the two boot software
versions thereby making the Boot-up sequence
more reliable.

The OBC Boot-up sequence will be described in
the following. The algorithm of the sequence is
shown in figure 9. The Boot-up sequence would

Basic Boot from PROM

New bootsoftware
n Flash memol

yes

flash memor
checksum ok?

no

Load CDH
from flash memory

Load CDH
from PROM

I
[

Start CDH
Reset boot-watchdog

Fig. 9. OBC Boot-up sequence

be executed as soon as the MCU was turned
on. The MCU was designed to always start by
contacting the PROM module. The first part of
the module, the basic boot, was made to contain
the basic software needed to set up the different
parameters internally in the MCU. This part was
kept in the PROM because it was the most vital
part of the boot software and e.g. indicated what
the internal MCU setting requirements should
be. By keeping the basic boot sequence at a
minimum, it was possible to alter more internal
MCU configurations in the boot even after launch.
If a port had to be reconfigured later, this could
be done by uploading new software as described
later on.

When the CDH uploaded new software it would
send a command through the I2C bus to the PSU,
telling it that new software was uploaded. PSU
would then signal this back by either a high or low
signal on a connection directly to the OBC. This
connection was to be used during the boot. After
the basic boot the MCU would then examine this
connection. If the connection did not indicate new
software the MCU would continue the boot from
PROM. If it indicated new software the MCU
would examine if the software stored in the flash
memory was valid. This was done by testing the
software using a checksum, as described later on.
If the software was valid it would continue its boot
from the flash memory. If not it would continue
the boot using the old software in the PROM
module hence working in a fail safe mode.

The PSU was set to control this because it had the
possibility of rebooting the OBC without being
affected by it.

A special algorithm was designed on the PSU
utilizing a watchdog. The algorithm is illustrated
in figure 10.

The initial state of the connection (PORT X
in figure 10) was low indicating that the MCU
should boot from the original software. When
the PSU powers up the OBC the first time the
OBC would therefore boot from PROM. As the

BOOT from PROM: PORT X =0
BOOT from flash memory: PORT X =1
(PORT X statusis programmable vial2C)

PORT X =0

TURN ON OBC
START TIMER

SEr =

YES

TURN OFF OBC
SET PORT X = INV. PORT X

WAIT X SEC.

L 1

RESET TIMER

-

NO
(RESET FROM OBC)

WES

TURN OFF OBC
WAIT X SEC.

Fig. 10. PSU Boot-up control

MCU continued its boot-up the PSU started a
timer. When the MCU had finished the boot-up
and started CDH the first thing CDH did was
to write a RESET command to the PSU. This
was done using the 12C bus. When PSU recieved
the command it reset its timer. If the boot-up of
the MCU failed and the system stalled this timer
would timeout. This indicated to the PSU that
the current boot-up had failed. This could be due
to the software being corrupted. PSU would then
turn off the OBC, invert the status of PORT X,
wait a predefined period of time to let the system
settle and then turn the OBC back on. This
routine would be continued until the OBC boots
succesfully. This means PSU would keep trying to
reboot the OBC, switching between the PROM
and the Flash memory until a boot from one of
the two software versions were successful. After
the boot the PSU would start a timer. This timer
should then be reset in specific timeintervals. If
the OBC stalled, this would not be done and the
PSU timer would timeout. When this occured the
PSU would turn of the OBC and restart it.

2.2.3. Uploading new software to the CubeSat Tt
was designed so that after launch of the satellite,
new software could be uploaded. This would be
desirable if the software onboard did not work
properly. Another reason could be e.g. trying to
optimize the performance of the satellite.

Before the new software could be uploaded, the
flash memory modules had to be preflashed, which

meant that all the bit cells in the flash memory
were set to ’1’. The Flash memory modules had
a build-in function that flashed the memory, if
particular codes were written to the address and
data bus. The function returned an error if a bit
cell could not be set to ’1’. This would make it
possible to monitor if the modules malfunctioned
during the satellites lifetime. When the modules
were flashed, the OBC could start storing new
software into the modules as soon as the new
software was recived and stored in RAM. When
the new software was stored the the OBC could
be rebooted and the new software used.

2.2.4. The Hamming code The purpose of im-
plementing error correction code on the Cubesat
was to avoid error in the bit information. It was
mainly when the bit information was stored in
memory, errors were expected. This was due to the
high exposure to radiation. The error correcting
code was based on the Hamming (12,8)-code al-
gorithm. This algorith was able to find and correct
1 bit in each byte. The Hamming (12,8)-code algo-
rithm encodes the desired byte with a specific code
enlarging the size of the information from 8bit to
12bit. When the data was needed or checked the
hammingcode would use a specifc algorithm. This
algorithm would find and correct errors and return
the original byte. On the Cubesat there were two
algorithms for handling the Hamming code: One
to encode and another to decode and correct the
data.

2.2.5. Getting temperatures of the OBC and Cam-
era A function was made to collect readings
from the temperaturesensors on top of the OBC
and camera. The temperature measurement were
to be used as a part of the housekeeping collec-
tion. The two sensors were of the type LM19. It
had a linear dependence between output voltage
and temperature making the readings simpler.
An A/D-converter was integrated on the MCU
and this was used to convert the analog signal
from the censors to an 8bit digital signal. The
A /D-converter was set to convert in single mode,
meaning that it only converted one signal at a
time. The input to the function was which sensor
to convert. So if both temperature were to be
used, the function Get_temperature(), needed to
be called twice.

2.2.6. Taking the picture When taking the pic-
ture the command from CDH only copied the
needed software into the internal RAM and ini-
tiated the hardware logic.

2.3 The payload camera

The camera unit was designed primarily to take
pictures of the earth covering an area of roughly
100km by 100km. Secondly it was to be used
as an observation platform enabling scientists to
measure the changing brightness of stars. The
camera unit which was a standard component
only slightly modified to meet the requirements
of a space mission, was to be supplied by the
Danish company Devitech. The biggest problem
when interfacing the camera to the OBC was to
transfer and store data with a high bit rate from
the camera. The high transferrate was needed to
prevent dataloss, since the camera had no possibil-
ity of buffering the data. DMA was implemented
instead of a buffer to save components.

The camera was able to have its internal parame-
ters changed. These parameters could be e.g. the
gain of the photo-chip inside the camera (this can
be compared to the aperture of an ordinary cam-
era). These parameters and the general control
of the camera could be accessed via the I2C bus.
The photo-chip supports the I2C bus and by using
this, it was possible to achive a simple and robust
system. Using the I2C bus would also make it easy
to read the commands sent to the camera unit
for debugging purposes. Since it was not possible
to find a photo chip with industrial specifikations
(the working temperature of the camera ranges
from 0-40 °C) an alternative solution was chosen.
By placing the camera in the centre of the satel-
lite the smallest possible change in temperature
should be insured, when the satellite was moving
from shade to sunlight. By placing the camera
right above the MCU, it would be possible to
use the MCU as a heat source. To ensure a good
picture quality a simulation of the optical system
was made. This simulation showed that a triplet
lens would be sufficient. It turned out that the lens
had to be made from special radiation hardend
glass to be used in space.

3. IMPLEMENTATION OF THE DESIGN

This section describes the measures that had to
be taken when the design was to be implemented
in the total design of the satellite.

3.1 Hardware implementation

The OBC will be build in two versions; an engi-
neering model and a flight model. The engineer-
ing model is used for final testing and the flight
model for launch. It was not possible to build
these two models due to the complexity of the
Printed Circuit Board (PCB), but a prototype
was build in order to later test the functionality of

the hardware and debug the software. To ensure
a properly manufactored PCB, a PCB producing
company will be involved in order to produce the
final prints. It was found necessary to use multi
layer prints with at least industrial standards,
in order to meet the requirements of operational
temperatures and physical space available in the
cubesat. Also components with SMD packages
was chosen to minimize the dimensions of the
OBC PCB.

Instead of PEELs and counters, an FPGA was
designed instead. The FPGA X128 from Actel
offered the possibility of having both the DCL
and CCL implemented in one chip. This would
save both space for the components and power.
About 100mW could be saved by using the FPGA.
The FPGA also offered less internal delay. This
again made the DCL more transparent for the
MCU. The strict timing requirements for the CCL
and DMA could also be met, since the FPGA of-
fered the possibility of using special internal delay
functions. An importaint factor was also that the
FPGA is only One Time Programmable (OTP).
This makes it more robust than PEEL circuits.
For the prototype PCB, flash memory were used
instead of PROM. This was done in order to allow
the developing and testing of software without
having to change PROM each time new software
were to be tested.

3.2 Software implementation

Since the OBC hardware was not realised during
the project, the software was neither implemented
nor tested on a final system. The different software
modules were designed though.

The design was documented by illustrating the
functionality of the programs with the help of
flowcharts. Some of the needed code was added
into the description of most modules.

As far as possible software principles behind the
design were tested on a MCB C167 board. The
test board used a C167 microcontroller which was
part of the C161PI microcontroller family.

The code might be modified when it is later
implemented on the OBC. But when the OBC
hardware has been fabricated, the final code has
been programmed and the software is going to
be implemented, this can, due to the described
design process, hopefully be carried out without
too much trouble. The later interfacing of the
OBC design to the design of the other satellite
subsystems showed that modifications had to be
made to parts of the software design:

3.2.1. The PC bus The I?C bus was supported
by the MCU to a degree that only small hard-
ware modifications were needed to be taken into

account when implementing the I?C bus. The
software control of the IC bus from the MCU
was done by controlling different internal registers
and buffers in the MCU. This control had to be
modified from the normal procedure due to two
reasons:

e Interrupt control: Due to the later imple-
mentation of the operating system (CDH)
the use of the I?C buffers had to be changed
to use interrupts. The interrupts would en-
sure that the control and timing of program
execution was kept in the hands of CDH.

¢ Repeated start: The units that the OBC
would contact over the I2C bus had micro-
controllers implemented that did not support
“Repeated start”. “Repeated start” is a vital
part of the I?C standard. The I2C protocol
designed for the OBC therefore had to be
redesigned to compensate for the lack of this.

3.2.2. The Hamming code algorithm A Ham-
ming code algorithm was made to detect errors
in the data stored in the RAM modules. The
Hamming algorithm was able to detect 1 error and
correct 1 error in a byte. When the sattellite is
exposed to radiation, 2 errors can occur simulta-
neously though. The Hamming code was therefore
redesigned later to be able to detect and correct
up to 2 errors in a byte [Pretzel (1992)].

3.8 Payload camera

The interface between the OBC and the camera
was designed, but not constructed. The software
for the interface has been designed but the actual
program is neiter written nor tested. The hard-
ware interface between the camera and the OBC
was designed and constructed in a provisionally
form. It will not be possible to finish it before
the OBC has been completed and a prototype
of the final camera unit has been received and
implemented. A draft for the design of the lens
was made and contact with a company from New
Zealand, willing to produce the lens, was estab-
lished. When the lens design is finished and a
suitable glass type has been found, the lens can
be produced. The camera and the lens must be
calibrated together e.g. to ensure that the picture
is in focus. Tests of the dataflow timing between
the camera and the OBC must also be conducted.

4. CONCLUSION

During the project the On Board Computer
(OBC) was designed. Hardware requirements were
defined, functions and methods defined and suit-
able components found. The printed circuit board

(PCB) of the (OBC) was also designed and a
prototype was constructed for later testing and
debugging. Due to the complexity of manufactor-
ing the final PCB, mounting the components and
getting the hardware parts from the producers, a
final OBC was not constructed. This also ment
that the software could not be tested. Instead
all software was designed and described to help
later implementation of the software into the OBC
hardware. The I2C bus system was chosen and a
special protocol was designed for the bus. Arrang-
ing hardware tests, establishing external contacts
to companies and individuals, doing initial lens
designs and researching possible satellite missions
was also done during the project.

REFERENCES

AAU. http://www.cubesat.auc.dk/. 2001.

DSRI. http://www.rummet.dk/. 2001.

12C. http://www.philips.com/. 2001.

MCU. http://www.infineon.com/. 2001.

O. Pretzel. FError-correcting Codes and Finite
Fields. Oxford University Press Inc., New York,
1992. ISBN 0192690671.

Rummet. http://www.rummet.dk/. 2001.

