

Title:

Distributed Control Room for the AAU CubeSat

Group:

01gr733

Members of the Group:

Mikael Bo Andersen Martin Nielsen

Gunnar Sigurðarson Jørn G. Larsen

Kenneth Sørensen Svend Møller

Supervisor:
Per Printz Madsen

Project period:
September 2nd – December 19th 2001-12-16

Number of pages: 72
Number printed: 9

Introduction to the worksheets
The students at Aalborg University have started building a small satellite. The design of
the satellite follows the CubeSat concept. A control room is needed for the satellite as a
part of the ground segment. This project deals with the development of this control
room. The control room is distributed to make it possible for the users to control the
satellite over the Internet.

The pre-analysis in this document describes what a ground segment. Furthermore it is
analysed which protocols and standards are best suited in the construction of a
distributed control room. The result of the pre-analysis is that PHP, HTML, HTTP and
HTTPS is chosen as the technologies for designing the control room.

In the analysis the system is split into three components: the first is a database, which is
the central part of the system. Here data about the satellite is stored. The next
component is the communication manager that is the interface between satellite and
database. Finally the graphics user interface provides the interface between users and
the database.

All of these three components are analysed but only the graphical user interface and the
database is designed and implemented.

The design describes the two components in detail and they are extended in order to
provide the functionality asked for.. Parts of the two components are implemented as a
prototype in order to be able test if the design is correct.

 5

Table of contents
1 Pre-analysis ...9

1.1 What is a ground segment?...9
1.2 Users ...11
1.3 Data...11
1.4 The AAU CubeSat ground segment ...12
1.5 System definition ..13

2 Analysis ...14
2.1 Component diagram for the system..14
2.2 Graphics user interface ...14

2.2.1 Users...14
2.2.2 Display structure ..15
2.2.3 Overview of the system..16

2.3 CubeSat database ..24
2.3.1 The tables ...24

2.4 Communication manager..28
2.4.1 Class diagram for the communication manager...29
2.4.2 State diagrams for the classes in the communication manager......................29
2.4.3 Functions..31

3 Design ..33
3.1 Primary objective design criteria ..33
3.2 Web page design...35
3.3 Fulfilling design criteria ...35

3.3.1 Use case validation...36
3.3.2 User validation ...36
3.3.3 Input validation ..36

3.4 Overall web page structure ...37
3.4.1 Groups..37
3.4.2 Class diagram...37
3.4.3 Test considerations...38

3.5 The classes of the system..38
3.5.1 Class Page ..38
3.5.2 Class Input validation...43
3.5.3 Class UserControl ..44
3.5.4 Class Systemlog ...48
3.5.5 Class Validation Administration..50
3.5.6 GUI Package ..53
3.5.7 HTML Package ..61

4 Test Results ...62
4.1 Use Case Test ...62
4.2 User Validation Test ...63
4.3 Secure Communication Test...64

Appendix I Protocol: HTTP (Hypertext transfer protocol)...65

Appendix II Protocol: RMI ...66

6

Appendix III Protocol: RPC (Remote Procedure Call) .. 67

Appendix IV Protocol: SOAP-Protocol ... 68

Appendix V Protocol: SSL-Protocol .. 69

Appendix VI Protocol: VPN (Virtual Private Network) .. 70

Appendix VII Protocol: XML-Protocol ... 71

Appendix VIII Protocol: XMLRPC (Remote Procedure Call over XML protocol) 72

 7

List of figures
Figure 1.1 Structure of a typical ground segment ...9
Figure 1.2 CubeSat ground segment ...12
Figure 2.1 Component diagram for the system...14
Figure 2.2 User case diagram for the different users and the tasks in the system15
Figure 2.3 Overview of the graphics user interface view ...16
Figure 2.4 The structure of the graphics user interface...16
Figure 2.5 Use case for the Logon class ...17
Figure 2.6 Use case for class Image..18
Figure 2.7 Use case for class flightPlan ..21
Figure 2.8 Use case for class Administrate...22
Figure 2.9 Table definition of the cubesat database..24
Figure 2.10 State chart for the Task table ...26
Figure 2.11 State chart for the UserControl class ...27
Figure 2.12 Communication between CubeSat and ground station................................28
Figure 2.13 Class diagram for the communication manager ..29
Figure 2.14 State diagram for CubeSatDatabase ..30
Figure 2.15 State diagram for SatCom..30
Figure 2.16 State diagram for T55xProtocol...31
Figure 3.1 Structure of the group organization ...37
Figure 3.2 Class diagram of the entire system ..37
Figure 3.3 Flow diagram of a default script ..39
Figure 3.4 Flow diagram of secure communication validation.......................................40
Figure 3.5 Flow diagram of the user validation ..41
Figure 3.6 Flow diagram of the use case validation..41
Figure 3.7 Execution of the initialization, functionality and finalization sections42
Figure 3.8 Flowchart of the logon function ..46
Figure 3.9 Flowchart of the validate function...48
Figure 3.10 Class diagram of the HTML package..61
Figure 4.1 Scenario for use case test ...62

8

List of tables
Table 2.1 List of user and their propose ... 14
Table 2.2 Different types of tasks in the system... 15
Table 2.3 Function description of the LogonStatus class... 17
Table 2.4 Function description of the MissionStatus class .. 17
Table 2.5 Function description of the Menu class.. 17
Table 2.6 Function description of the Log class and the Housekeeping class 18
Table 2.7 Function description of the Log class and the Housekeeping class 18
Table 2.8 Function description for the Image class.. 19
Table 2.9 Function description of the Log class and the Housekeeping class 20
Table 2.10 Function description of the MemoryManager class 20
Table 2.11 Function description of the FlightPlan class .. 21
Table 2.12 Function description of the Administrate class .. 23
Table 2.13 Function description for the Kepler table... 25
Table 2.14 Function description for the Log table ... 25
Table 2.15 Function description for the Housekeeping table... 25
Table 2.16 State definition for the Task table .. 25
Table 2.17 Function description for the Task table .. 26
Table 2.18 Function description for the Image table.. 27
Table 2.19 State definition for the UserControl table .. 27
Table 2.20 Function description for the UserControl table .. 27
Table 2.21 Function description for the Configuration table ... 28
Table 2.22 Function description for the class SatCom... 31
Table 2.23 Function description for the class T55XProtocol... 32
Table 3.1 Design criteria for the graphics user interface.. 35
Table 3.2 Description of tasks in a default scripts.. 39
Table 3.3 Security validation table description .. 43
Table 3.4 Example of security validation table .. 43
Table 3.5 User control table description... 44
Table 3.6 Definition of the Syslog table... 49
Table 3.7 States table.. 50
Table 3.8 Classes table ... 51
Table 3.9 “class” table .. 51
Table 3.10 flightPlan table.. 57
Table 3.11 Class description of the HTML package .. 61
Table 4.1 Log results from use case test... 62
Table 4.2 Log result from user validation .. 63
Table 4.3 Log result from user validation .. 63
Table 4.4 Log result from user validation .. 63
Table 4.5 The encryption communication scenarios and the test results 64

 What is a ground segment?

 9

1 Pre-analysis

1.1 What is a ground segment?
The purpose of this section is to give the reader an overview of what a ground segment
for supporting a satellite is, and how others have implemented such system.

First, the general structure will be described, and how users are interacting with the
system and how data are represented in the system1.

Figure 1.1 Structure of a typical ground segment

1 Article: JSWITCH/JSAT: REAL-TIME AND OFFLINE WORLD WIDE WEB INTERFACE

http://isc.gsfc.nasa.gov/Papers/DOC/JSWITCH.PDF, December 2001

The role of Centralization in a Distributed Architecture: The SCOS II Experience

http://www.esoc.esa.de/external/mso/SpaceOps/2_09/2_09.pdf, December 2001

Command and
data handling

Modem

Radio

Mission database
Client

for SCS

Client
for MCS

WWW server for
public access

LAN

Pre-analysis

10

Radio and modem
The low-level communication between ground segment and satellite is
maintained by radio. The radio is connected to the command and data-
handling unit by a modem. In order to make the communication reliable a
lower layer network protocol is introduced.
Command and data handling
This unit maintains the high-level communication between ground and
satellite. Commands are sent and received from the satellite. Before the
commands are sent to the satellite, they are verified and scheduled in order to
check that command sequences are valid. The data from the satellite is
received and distributed to the clients that need them. This unit may also
carry out alarm and event handling from the satellite.
Mission database
All commands and data are stored in this database in order to keep track of
the events of the satellite.
Client for MCS and SCS
To represent data from the satellite, client software is needed. It can be a
large screen to represent all the data from the satellite or a special client for
every type of user. The clients can be placed locally and connected by LAN or
they can be remote and connected via the Internet or some other kind of
remote access.

Server for public access
On some missions, the public has access to view data from the satellite, for
example photos. Typically, this access is realised by a web-server, which
enables the public to access parts of the mission data through their web-
browser.
LAN
All units at the ground segment are connected through a local area network.
This may be a standard network like an Ethernet or a real time network
depending on the situation.

 The AAU CubeSat ground segment

 11

1.2 Users
The users that make use of a ground segment can be categorized as a satellite, mission
control staff (MCS), scientific staff (SCS) and public users. Those users will be
described in the section below.

Satellite
The Satellite uses the ground station to inform other users about status and
events of the satellite and to send the information that the payload gathers to
the users. The communication between the ground station and the satellite
has to include some sort of identification to make sure that only one satellite is
communicating with the ground station.
Mission control staff
The roles of these users are to control and monitor the satellite. This includes
that they have to look at the housekeeping data and act if there is a need for
that. They also have to act when the satellite sends alarms. These users are
authorized to view and change a part of the parameters in the satellite.
Scientific staff
The scientific users have access to the data that is gathered by the payload of
the satellite, this data is often private. Scientific staff has been granted access
to view and change parameters related to the mission or payload of the
satellite.
Public users
In some missions, the public have limited access to view data from the
satellite.

1.3 Data
The data in a typical ground segment for a spacecraft is based on telemetry and tele
commands. Telemetry is data transmitted from the spacecraft to the ground. Conversely,
tele commands are data send to the spacecraft. Telemetry and Tele commands are
represented as small packages, or frames, which are transmitted via a radio link between
the spacecraft and the ground station. To keep track of the life of the spacecraft these
data are stored in a database.

Telemetry
The onboard telemetry data are created in two categories, housekeeping and
scientific data. The sensor readings on board the satellite creates the
housekeeping and the payload creates scientific data.
Tele commands
Tele commands are issued by ground personal to control the satellite. It can
be commands that tell it what to do or it can be requests for information,
which then are transmitted as telemetry from the satellite. The Tele
commands has to be coordinated in order to make sure that the satellite is in
a state in which the commands are valid.

Pre-analysis

12

1.4 The AAU CubeSat ground segment
The structure of the AAU CubeSat ground segment is build up of four modules, showed
in Figure 1.2. The “com” module handles the communication to and from the satellite
and includes a radio and modem. This module will only be analysed and not designed or
implemented in this project. The main area this project will cover is the developing of a
server system and the clients that interact with it.

Figure 1.2 CubeSat ground segment

The first topic that has to be covered is how clients and server should communication
with each other. What type of protocol should be used and what type of protecting
system should the communication work on. Demands, to the communication between
client and server are shown in the list below.

• It should be possible to log on to the system from “everywhere” on the Internet

• Some kind of security must exist to protect communication from unauthorized
persons

• Communication through proxies and firewalls should be possible

• The system must be platform independent

• An encrypted protocol must be used to secure communication

• Commands sent from a client must be handled within a specified time

In appendix I to VIII the possible protocols are described. From this, it was chosen to
use HTTP and HTTPS protocol to realise the communication between clients and
server.

Com. Web Server

FW

Client 1 Client 2 Client 3

FW Proxy

Internet

Database

 System definition

 13

1.5 System definition
A distributed control room for the AAU CubeSat has to be constructed. A distribution
via the Internet using PHP to generate HTML documents and SSL to encrypt the
communication must be implemented. Users should be able to access data stored in a
MySQL database at different access levels. A Linux server should contain the database
and an Apache web server. The communication with the satellite is analysed but not
design, implemented and tested.

Functionality Communication with the CubeSat

Make the students from the sub-systems able to
communicate with their sub-systems in the satellite
Remote communication via Internet using HTTP and
HTTPS protocols

Application
Domain

Students from other subsystems
5th semester group with communication
Web-access for public users
Web-access for staff (students)

Conditions Used by students at AAU
Most users have knowledge about software and
programming
Poor specifications from the start
The software is a service, which is used by other
students
Must be distributed system

Technology HTTP / HTTPS
PHP
MySQL database
C++
PC
Linux

Object system Telemetry (housekeeping, log, image, memory dump)
Tele commands (memory update, take picture, ???)
Images
Users

Responsibility The system is responsible for the distribution of the
control room

Analysis

14

2 Analysis
In this chapter the analysis of the system is described. First part is an overview of the
whole system divided into three components. Each component is analysed
independently and described in details.

2.1 Component diagram for the system
The system is divided into three components. The graphics user interface is used to
provide access to the system for all the users. The database is used for storing
information in the system and to provide a synchronization mechanism between
communication manager and the graphics user interface. The communication manager
is responsible for the communication with the satellite. The component and their
relations are shown in Figure 2.1.

Graphics User Interface Cubesat Database Communication Manager

Figure 2.1 Component diagram for the system

Each of these subsystems is described in details in the following chapters.

2.2 Graphics user interface
The graphics user interface (GUI) component acts like a link between the users and the
system. This analysis is based on the technology used for this component. It will be
implemented as a number of homepages on a website and the functionality is a number
of server scripts.

2.2.1 Users
The system has different type of users. Each user was found in the preanalysis and their
purposes were described. In table 2.1 each user is described and a new type of user,
administrator is introduced.

User type Description
Administrator This user has the total control of the system. There is no

limitations
Mission control staff This user is responsible to control the satellite. The only

limitation is user administration
Scientific staff These users can access all the information received from the

satellite. They can not perform any changes to the system
Public These users have only limited access to the system

Table 2.1 List of user and their propose

Each user has access to a number of tasks. Each task is shown in table 2.2.

 Graphics user interface

 15

Task name Description
Status Display a short summery of the chosen variables from the

system.
Image Viewer for the images received from the satellite.
Log Displays the log from the satellite
Housekeeping (HK) Displays the housekeeping data from the satellite
MemoryManager Manage the memory in the satellite
Flight plan Management system for the flight plan. This included adding,

editing and deleting of different types of tasks
Administrate Administration of the users who need to access the system. It

will be possible to add, edit and delete users.

Table 2.2 Different types of tasks in the system

The different types of users have only access to some of the tasks. This is depicted in
figure 2.2.

Figure 2.2 User case diagram for the different users and the tasks in the system

2.2.2 Display structure
The homepage is divided into several frames each with a special purpose. The frame
division is depicted in figure 2.3.

MemoryMananger

HouseKeeping

Log

Status

Flight plan

Image

Public

SCS

Administrate

MCS

Administrator

Analysis

16

Figure 2.3 Overview of the graphics user interface view

2.2.3 Overview of the system
Combining the system tasks and the display structure, a class diagram is constructed.
This provides an overview of the relations in the graphics user interface and is depicted
in figure 2.4.

 Figure 2.4 The structure of the graphics user interface

The different classes will be described in details in the following sections.

Frame: Status [LogonStatus]

Frame: Mission-Status [MissionStatus]

Frame: Mission-Status-Top []

Frame: Menu [CubesatMenu]

Frame: Main [Logon, Image, Log, Housekeeping,

MemoryManager, Flight plan, Administrate]

Frame: Title []

-image()
-administrate()
+main()

Menu

+main()

-Communication status
-Flightplan ready for upload
-Software ready for upload
-NORAD positions ready for upload

MissionStatus

+main()
-download()

SatLog

+main()
+download()

Housekeeping

+updateSoftware()
-selectFile()
-sendFile()
+checkMemory()
+dumpMemory()

MemoryManager

+main()
-create()
-remove()
-edit()
-approve()
-unapprove()

Flight plan

1
1

1

1

1

1

1

1

1

1

1

1

+mailingList()
-subscribe()
-unsubscribe()
+searchForPicture()
-search()
-selectPicture()
-results()
+newestPicture()
+preview()
+viewFuturePositions()

Image

+addUser()
-acceptUser()
+viewUsers()
-deleteUser()
-confirm()
-changeGroup()
-acceptGroup()
-changePassword()
-acceptPassword()
+viewStatistics()
-cancel()

Administrate

1

1

+main()

Status

+main()
-dologon()
+logoff()

-Username
-Password

Logon

Homepage

1 111

1

1

+main()

Information

1

1

 Graphics user interface

 17

Class Status
This class provides the features to logoff the system. The functions are described in
table 2.3.

Name Complexity Type Description
main ”Link” Read Display the current

authorization of the user

Table 2.3 Function description of the LogonStatus class

Class MissionStatus
Selected information gathered by the satellite is displayed by this class. The only
function is update and it is automatically called every 10 seconds. The function is
described in table 2.4.

Name Complexity Type Description
main ”Link” Read This function displays a

list of log entries or
housekeeping entries

Table 2.4 Function description of the MissionStatus class

Class Menu
The menu is used to select the different tasks in the system. The functions are described
in table 2.5.

Name Complexity Type Description
image ”Link” Read Expand the image

submenu
administrate “Link” Read Expand the administrate

submenu
main Low Read Show the default menu

Table 2.5 Function description of the Menu class

Class Logon
This class provides the functionality to log on to the system. The functions are described
in table 2.6.

main dologon
Logon

cancel

Figure 2.5 Use case for the Logon class

Analysis

18

Name Complexity Type Description
main ”Link” Read Display the logon form
dologon “Link” Update Performs the actual logon
logoff “Link” Read Log the user off the

system

Table 2.6 Function description of the Log class and the Housekeeping class

Class Information
This class shows some default message the all the users. The functions are described in
table 2.6.

Name Complexity Type Description
main ”Link” Read Display the information

form

Table 2.7 Function description of the Log class and the Housekeeping class

Class Image
This class provides functionality to view the images taken from the satellite. It will be
possible to select the newest picture, search for a specific one and get a preview of the
pictures taken. There will also be some possibility for subscribing to a mailing list and
get a mail when a picture successfully transferred to the ground.

The use of these functions is described in the use case depicted in figure 2.6.

Mailing list

Subscribe

Unsubscribe

Searchpage

Resultpage

Search for picture

Search

Show picture
Select picture

Select picture

Picture preview

Results

Preview

Future positions

Image

Public

View future positions

Mailing list

Search for picture

Newest picture

Preview

Figure 2.6 Use case for class Image

 Graphics user interface

 19

A list of the function in this class is described in details in table 2.8.
Name Complexity Type Description
mailingList “Link” Simple “html” link on the

main homepage to the
mailing list homepage

searchForPicture “Link” Simple “html” link on the
main homepage to the
search homepage

subscribe Low Update Having entered first name,
surname and email address
the user can subscribe the
mailing list. The email
address is written in the
database

unsubscribe Low Update Having entered first name,
surname and email address
the user can unsubscribe
the mailing list. The email
address is deleted from the
database

search High Read Using input specified by the
user on the search
homepage, the database is
searched for pictures
relevant to display. The
search result is used to
make a number of links that
will display the picture
(select picture)

selectPicture “Link” Simple html link on the
result homepage and the
picture preview homepage
to the show picture
homepage (made by search
or preview)

newestPicture “Link” Link made on main
homepage

preview Medium Read Display a preview of every
picture in the database. The
database must be searched
to make links to every
picture (select picture)

viewFuturePositions Medium Read Display a list of the future
positions for the satellite to
take a picture. Information is
read from the database to
display a total list

results Low If a search has previously
been carried out the result
of this will be displayed
again. If no search has been
carried out no result is
displayed

Table 2.8 Function description for the Image class

Analysis

20

Class SatLog and class Housekeeping
These classes provide the functionality to access the information gathered by the
satellite. There are only two functions described in table 2.9.

Name Complexity Type Description
main ”Link” Read This function displays a

list of log entries or
housekeeping entries

download “Link” Read This function generates a
data file with the log or
housekeeping data

Table 2.9 Function description of the Log class and the Housekeeping class

Class MemoryManager
This class provides the functionality to manage the memory in the satellite. It will be
possible to read, upload and verify the software in the satellite. The functions used for
this is described in table 2.10

Name Complexity Type Description
updateSoftware High Update It must be possibly to

perform memory updates
in the onboard computer.

selectFile ”Link” Display a from where a
software update is placed

sendFile Low Update Stores a file in the system
checkMemory

High Read Check part of memory for
errors such as bit flips

dumpMemory

High Read Dump part of the memory
on the onboard computer
to earth

Table 2.10 Function description of the MemoryManager class

Class FlightPlan
This class provides the possibility to create, edit and remove tasks in the flight plan.
Once a set of tasks is created it can be approved in order to tell the system that it is
ready to be uploaded to the satellite. Conversely the set can be unapproved to withdraw
that it is ready for upload. This feature is added to ensure that a part of a set of tasks is
not uploaded while it is being edited. The use case for the flightPlan is depicted in
figure 2.7.

 Graphics user interface

 21

editForm

verify

main
view

removeapprove unapprove

cancel editcreate

back

main

ok

Flightplan

Public

Figure 2.7 Use case for class flightPlan

The functions needed for providing this functionality is described in table 2.11.
Name Complexity Type Description
main Low Read By this flight plan management

can be entered. Only one MCS
gets access at a time

create Medium Update This function is used to add a
task to the flight plan

edit Medium Update This function is used to edit an
already existing task

cancel Low Update This function exits the editForm
and calls main

ok Medium Update This function verifies user input
and stores a task in the database

remove Low Update This function removes a specific
task from the flight plan

approve Low Update This function makes the tasks
available for upload to the
satellite

unapproved Low Update This function makes the tasks
unavailable for upload

back Low Update This function is used to return to
the editForm if an invalid task is
created or edited

Table 2.11 Function description of the FlightPlan class

Class Administrate
User administration is handled by the class Administrate. It provides functionality to
view, update, add and delete users. The use of these functions is described in the use
case depicted in figure 2.8.

Analysis

22

Administrate

AddUserForm

ViewUser

Statistics

ChangePasswordForm

ChangeGroupForm

DeleteUserForm

Public

acceptUser

changePassword

changeGroup

deleteUser

confirm

acceptGroup

acceptPassword

viewStatistics

addUser

viewUsers

cancel

cancel

cancel

cancel

Figure 2.8 Use case for class Administrate

The functions shown in the figure is described in detail in table 2.12.

 CubeSat database

 23

Name Complexity Type Description
addUser ”Link” Displays a add user form
acceptUser Medium Update Adds a new user to the

system and verifies that no
other user with the given
username exists

viewUsers Low Read Displays a list of user and the
options to delete and change
the group or the password of
a user

deleteUser ”Link” Displays a delete user form
confirm Medium Update Delete the user from the

system
changeGroup ”Link” Displays a change group

form
acceptGroup Low Update Verifies the new group and

updates the user
change
password

”Link” Displays a change password
form

acceptPassword Low Update Verifies the new password
and updates the user

viewStatistics Low Read Displays the statistics for
each user in the system

cancel Low Read Cancels any forms

Table 2.12 Function description of the Administrate class

Analysis

24

2.3 CubeSat database
The CubeSat database (CSD) is the core of the system. It defines the way information in
the system is stored. It also describes the functionality used to access the stored
information. The component is analysed on the assumption that a database is used as the
tool to provide the storing of information. All the functions are assumed to be a set of
SQL queries.

2.3.1 The tables
The CubeSat database is divided into seven tables. The tables are depicted in figure 2.9
where the tables Log, Housekeeping, FlightPlan and Image are derived from
specifications achieved in cooperation with the command and data handling group2. The
Kepler table is derived from specifications from NORAD3.

The table Configuration is added to the system to provide a necessary storage for the
system state. In addition the table UserControl is added to provide administration of the
different users.

Figure 2.9 Table definition of the cubesat database

Each of these tables has some functions and use cases to describe their behaviour. These
are described in the next sections.

Table Kepler
This table is used for storing information about the current position of the satellite. The
information is provided by NORAD. The information is updated every second week and
will be stored in this table. When the satellite is in range the new position will be send
to it. The functions available are described in table 2.14.

Task Actor SQL-Type Description
InsertItem COMM insert Insert a new Kepler element in

the table
View COMM,

WEB
select View the rows in the table and

extract the newest Kepler
element

2 http://www.control.auc.dk/~01gr720
3 http://celestrak.com/NORAD/documentation/tle-fmt.shtml

Configuration

PK id

name
value

Kepler

PK id

epoch_time_low
epoch_time_high
element_set
inclination
rA_of_node
eccentricity
arg_of_perigee
mean_anomaly
mean_motion
decay_rate
epoch_rev

Log

PK id

sender
time
message

FK1 task_id

HouseKeeping

PK id

time_stamp
solar_volt
solar_cur
batt_volt
bus_volt
sybsys_cur
temp
ACSMode
CAMMode

FlightPlan

PK id

FK1 user_ID
state
task_type
time_of_first_execution
periodic_task
parameter
comment

Image

PK id

name
location
time_stamp
filename

FK1 task_id

UserControl

PK id

username
password
firstname
lastname
email
maiinglist
groupnr
phonenr
group_id
current_group_id
logon_times
last_logon
session_id
timeref

 CubeSat database

 25

Table 2.13 Function description for the Kepler table

Table Log
The errors and warnings arising in the satellite is stored in this table to give an overview
of the satellite performance and software mishaps. Reading the information can help to
detect and correct errors occurring in the satellite. The functions available are described
in table 2.14.

Task Actor SQL-Type Description
InsertItem COMM insert Insert a new log element in the

table
View WEB select View a set of rows in the table

Table 2.14 Function description for the Log table

Table Housekeeping
The satellite is sampling measurements from the onboard subsystems in given intervals.
The information gathered is stored in this table. This will be useful for running overall
statistics of the satellites performance. The functions available are described in table
2.15

Task Actor SQL-Type Description
InsertItem COMM insert Insert a new housekeeping

element in the table
View WEB select View a set of rows in the table

Table 2.15 Function description for the Housekeeping table

Table FlightPlan
To construct a flight plan for the satellite a number of tasks is put together. Each task
has a variable indicating the state of the task. There are five different states and these
are described in table 2.16.

State Description
Created When created every task enters this state. Now is

it possible to change information in the task
Approved An approved task is ready for transfer to the

satellite.
Uploaded When the communication manager has sent the

tasks to the satellite it changes it to this state
Failed Is set when an execution error is reported by the

satellite
Succed Is set when an successful execution is reported by

the satellite
Failed during upload Is set when the upload of the task failed

Table 2.16 State definition for the Task table

The change of state in a task is done in a specific pattern shown by the state chart in
figure 2.10.

Analysis

26

Figure 2.10 State chart for the Task table

The functions needed to change the state are described in table 2.17.
Task Actor SQL-Type Description
createTask WEB insert Insert a new task in the system
editTask WEB update Update a task with new

information
removeTask WEB delete Deletes a set of tasks

specified by the user
upload COMM update Changes the state of a set of

tasks to upload
viewTask WEB select View a set of tasks
approveTasks WEB update Changes the state of a set of

tasks to approved
unapproveTasks WEB update Changes the state of a set of

tasks to unapproved
errorInUpload COMM update Changes the state of a set of

tasks to failed to upload
errorInExecution COMM update Changes the state of a set of

tasks to failed
executed COMM update Changes the state of a set of

tasks to succeeded

Table 2.17 Function description for the Task table

Table Image
The images taken with the camera in the satellite is send to earth and saved in a file.
This table provides information about each of the images taken and a reference to the
file. The functions available are described in table 2.18.

Task Actor SQL-Type Description
InsertItem WEB insert Insert information about an

upcoming image
Update COMM update Adds a reference to a filename

where the image is stored
View WEB select View a set of rows in the table

Created
createTask upload

removeTask

editTask

Uploaded

errorInUpload

Failed
errorInExecution

viewTask

Approved

approveTask

unApprove

Failed during
upload

executed

Succeded

 CubeSat database

 27

Table 2.18 Function description for the Image table

Table UserControl
This table stores information about each user for user administration. A user has a
variable indicating the state of a user. The states are defined in table 2.19.

State Description
LoggedOff The user is not logged into the system
LoggedOn The user is logged into the system as a specific

type

Table 2.19 State definition for the UserControl table

The change of state must be performed in a specific pattern shown in a state chart in
figure 2.11.

LoggedOff
addUser deleteUser

updateUser

LoggedOn

logOn logOff

Figure 2.11 State chart for the UserControl class

The function needed to change the state is described in table 2.20.
Task Actor SQL-Type Description
Add WEB insert Insert a new user into the

database
Update WEB update Changes information about the

user
Delete WEB delete Deletes a user from the

system
View WEB Select View a set of users from the

table
Logon WEB Update Change the state of a user to

logon
Logoff WEB update Change the state of a user to

logoff

Table 2.20 Function description for the UserControl table

Table Configuration
This table is used to store the global state of the system. Each entry is specified by a
name of the state and the value. The functions available are described in table 2.21.

Analysis

28

Task Actor SQL-Type Description
UpdateItem COMM,

WEB
update Updates a row with a given

name with a new value
LockTable COMM,

WEB
lock table Lock the table for exclusive

rights
UnlockTable COMM,

WEB
unlock
table

Unlock the table

View WEB select View a set of configuration
elements

Table 2.21 Function description for the Configuration table

2.4 Communication manager
The communication manager is the part of the ground station that handles the
communication between the database and the spacecraft. The order of the
communication is depicted in figure 2.12:

Figure 2.12 Communication between CubeSat and ground station

The communication manager tries to connect when receiving a beacon, if successful;
the communication manager waits for the log to arrive. Then a time synchronisation is
initiated and next a synchronisation of the flight plan is performed. In the end of the use
case, the communication manager waits either for a new flight plan update in the

beaconRecieved

connecting

connected

recievingLog

syncronizingTime

logRecieved

timeSyncronized

syncronizingFlightPlan

flightPlanSyncronized

waiting

outOfRange / reset

outOfRange / reset

flightPlanUpdated

outOfRange / reset

outOfRange / reset

outOfRange / reset

 Communication manager

 29

database or for the satellite to go out of range. In addition to this suspected use case, the
satellite can go out of range before the end of the sequence or the mission control staff
can reset the satellite main computer.

2.4.1 Class diagram for the communication manager
The communication manager consists of three classes. A class named CubeSatDatabase,
a class named SatCom and a class named T55xProtocol. Together these define the
model layer for the Communication Manager. The structure between the classes is
shown in figure 2.13.

SatCom CubeSatDatabase

T55xProtocol

1

1

Figure 2.13 Class diagram for the communication manager

The class CubeSatDatabase represents the database for the system; this is associated
with the SatCom witch represents the communication part of the satellite. This class
aggregates a class T55xProtocol witch handles the actual satellite-ground
communication by providing some extra functionality and an encapsulations of the
protocol T55x witch others has developed.

2.4.2 State diagrams for the classes in the communication manager
A description of the behaviour of the classes is in the following paragraph, provided by
the means of state diagrams.

CubeSatDatabase
The class CubeSatDatabase represents the actual CubeSatDatabase and has one state,
and this is the state running. When in this state several things can happen. The log can
be stored in the database by using putLog, the housekeeping data can be stored in the
database by using the putHousekeepingData, and an image can be stored in the database
by using putImage. By using uploadFlightPlan, the current flight plan is extracted from
the database. ErrorInUploadFlightPlan, errorInExecutionFlightPlan and
executedFlightPlan is used to change the state of tasks in the flight plan.

When new keplerdata is received from NORAD the keplerReceived event is triggered,
and finally by using getResetStatus the satellite knows if a reset has been requested.
This behaviour is depicted in figure 2.14:

Analysis

30

Figure 2.14 State diagram for CubeSatDatabase

SatCom
This class has two states, named outOfRange and inRange. When resuming or pausing
the communication with the satellite, the transition between these states happens. See
figure 2.15:

Figure 2.15 State diagram for SatCom

When it is in the state inRange, the following things could happen. The CubeSat
database can reset it, synchronize the flight plan or synchronize the time. In addition, an
image, log or house keeping data can arrive to the ground segment.

T55xProtocol
This can be in three different states, connectionPaused, when the satellite is not in
range, resumeConnection when the satellite is in range but communication has still not
been resumed, and finally connectionResumed, which is when the communication
between ground segment and the satellite is successfully resumed. The states and
transitions between them are depicted in figure 2.16:

InRange

init done

resumeCommunication pauseCommunication

OutOfRange

imageArrived

logHkArrived

reset

syncronizeFlightPlan
syncronizeTime

running

init done

uploadFlightPlan

getResetStatus putImage

putHousekeepingData

putLog

keplerRecieved

errorInExecutionFlightPlan
errorInUploadFlightPlan

executedFlightPlan

 Communication manager

 31

Figure 2.16 State diagram for T55xProtocol

Until receiving a beacon from the satellite, the communication will be paused. At this
time, the T55xProtocol will enter the state resumeConnection. In this state, it tries to
resume the connection, if this fails, it returns to the former state until receiving a
beacon. If the connection is resumed, it enters the state connectionResumed. Three
things can happen in this state, either it can send data or data can be received, when
these happen, the T55xProtocol remains in the same state.

If the connection is paused by the T55xProtocol, because the satellite is out of range or
because the connection fails by other reasons, or because of an activation of a reset, then
it enters the state connectionPaused.

2.4.3 Functions
From the state diagrams and the class diagrams following functions have been found.

Class SatCom
The imageArrived function handles an image and sends it to the database. This includes
a conversion from the satellite image format to a standard Internet format.

Function synchronizeTime calculates the difference between the satellite and earth time.
The difference is added to the earth time, so that the satellite never has to change its
time.

Function synchronizeFlightPlan uploads the newest flight plan from the database. By
looking at the housekeeping and log information from the satellite, it will be possible to
determine which part of the flight plan to be uploaded to the satellite.

Functions name Complexity Type
resumeConnection Medium Signal
logHKArrived Low Update
pauseConnection Simple Update
imageArrived Medium Update
synchronizeTime High Signal
Reset Low Update
synchronizeFlightPlan High Signal

Table 2.22 Function description for the class SatCom

pauseConnection

beaconReceivedinit

succes

dataSend

connectionPaused
unsuccesful

resumeConnection

connectionResumed

done

dataReceived

Analysis

32

Class T55XProtocol
The beaconReceived event will take place if the transport protocol has been paused, and
after that have received a beacon from the satellite. The beaconRecevied function
should be a call back function from T55X API interface and will initiate a resume call
to the API.

DataSend and dataReceived functions control the data flow through the T55X protocol.
dataReceived should be registered as a call back functions in the T55X API interface.

Functions name Complexity Type
beaconReceived Medium Signal
dataSend Medium Update
pauseConnection low Signal
dataReceived Medium Update

Table 2.23 Function description for the class T55XProtocol

 Primary objective design criteria

 33

3 Design
Designing the system consists of two different phases. First phase consist of an
overview of the system architecture. Second phase is a detailed description of
functionality of the different classes in the system.

Designing the architecture is developing a system structure and specifying design
criteria. These affect the design, implementation and test of the software. A criterion is
defined as a quality measurement that focuses on one aspect of the design. Therefore is
it important to careful select the main criteria.

Specifications of the overall results are important before choosing the design criteria.
Therefore, the system is divided into two objectives. The primary objective is the
graphics user interface. The cubesat database and communication component are
secondary objectives. The design criteria are chosen to concern the primary objective
only.

3.1 Primary objective design criteria
The choice of criteria is shown table 3.1 where the importance of each criterion is
defined. The rest of the design will focus mainly on fulfilling the most important
criteria.
Criteria name Important Description
System access Very high Insuring the right access to the system is very important. There

are two different situations included in this definition.
• Users have to fulfil the specified use cases. Thereby

the system must be designed in a way that easily
verifies the correct use.

• Discarding unauthorized users from the system. These
users could be hackers trying to grant access the
satellite control.

Both situations have great impact when designing and testing
the software. The difficulty lies in the definition of unwanted use
of the system. The derived use cases from the analysis specify
the correct use. All other use of the system should be reported.
The reporting feature is critical to design because storing the
right information is essential in order to correct the problem.

Design

34

Criteria name Important Description
Input validation Very High Human interaction requires validation of the input. Ensuring the

input correctness could minimize errors in the system There
are six aspects in this validation process.

• Discarding any unwanted data from the input. It could
be keys enter, escape, backspace etc.

• Checking for the presence of specific characters. It
could be the symbol ‘@’ and ‘.’ in an email address.

• Limitations of string lengths are useful when dealing
with strings as usernames, passwords and control
variables. Both the minimum and the maximum
number of characters should be checked.

• Non-visible characters. Protecting passwords is
essential to maintain a high level of security. This
requires an input system, which do not, displays the
input from the keyboard.

• Type checking of the input. Converting the input to the
right type requires some functionality, which is mostly
provided by the programming language. An error can
occur when converting the input and this must be
handled. A conversion could be strings to numbers or
strings to dates. Letters that cannot be converted must
be handled.

• Interval specification. Setting ranges for the numbers
or dates must be specified and verified.

Fulfilling this requires specific validation patterns that have to
be checked. All inputs from the users have to be checked.
Another aspect is to report an error when user input cause an
execution failure. A correct error reporting can help deriving
better validation pattern in future updates of the software.

Testability High Test of software is essential but a changeling discipline. Test is
used to validate the correctness of the software. There are two
aspects of testing.

• Test during software implementation. Two different
type of test exists. White box testing where all the
functionality is tested independently and the black box
test used to test the overall functionality of the system.
These tests takes a lot of time to specify and perform,
but combining design and test considerations can help
minimize the time needed to test the software. A
problem with these tests is the programmer often gives
the perfect input and seldom scenarios occur where
the input is wrong. The problem lies in the programmer
knowledge of the future users’ use of the system.

• Test during normal software operation. These tests are
more critical because the use of the system is more or
less unknown. The real problem in this scenario in the
users’ use of the system. There are always ways of
using the system as programmers never thought
about. A good design could help detecting errors and
thereby help the programmer to correct the errors.

Considerations in the design regarding the testing of the
system can help minimize the time needed to test the software
and provide easier error detection.

 Fulfilling design criteria

 35

Criteria name Important Description
Functionality Middle Functionality is the task of designing, implementing and testing

separate functions or the total flow in the system. There are
different aspects, which are defined below.

• Class functionality where each function is carefully
defined and verified. This requires a black box test of
each function where the input and expected result is
defined. This test should verify the correctness of the
result of the function given a specific input. Each
function can be designed as flowcharts, timeline
schematics etc.

• System functionality where the flow in the system is
important to describe and verify. This is difficult
because a system can be designed as a number of
processes running local or remote. Here the interaction
between the processes is essential but difficult to
describe because the flow is nondeterministic.
Scenario description can help designing and testing
the system. A careful design can help verify the
correctness of the system functionality.

Table 3.1 Design criteria for the graphics user interface

Given the design criteria, it is possible to begin the considerations of the system
architecture. These are described in the next section.

3.2 Web page design
Because the object-oriented analysis and design method is not developed for web pages,
it must be considered how the analysis is used throughout the design. The main results
in the analysis were a class diagram, use case diagrams and a number of function
descriptions.

The class diagram describes the structure of the system. As many object-oriented
programming languages use one file per class, it would be preferable to implement the
web page using the same division. This should be no problem when using PHP because
one file can include others and thereby gain access to the code of the other classes.

Concerning variables associated to a class they will be implemented as variables in the
PHP scripts where needed.

Use case diagrams achieved in the analysis show the intended use of the final program.
These along with the function descriptions should be used later on when going into
details about the way each function is designed.

3.3 Fulfilling design criteria
The overall design must be considered carefully to fulfil the design criteria. The secure
access and input validation criteria require three things to be fulfilled by the design: use
case validation, user validation and input validation. The following three sections
describe which impact these validations cause on the design.

Design

36

3.3.1 Use case validation
This type of validation is carried out to ensure that the program cannot end up in a state
not considered by the programmer. Looking at the use case diagrams in the analysis it is
already specified which transitions are allowed. However, in some way the program has
to be able to check which transitions it is carrying out. This could be done by indicating
the current state by a variable and then checking if a change to a new state is allowed
before executing the function causing the transition. If this validation is implemented in
every class, it could easily become a hard time administrating the valid state transitions
as it is distributed into a number of files. Due to the common validation for every class,
it would be reasonable to create a universal class that handles every use case validation.
An advantage in this approach is that information about valid state transitions is
collected in one class and therefore easier to administrate.

3.3.2 User validation
From the class diagram, it is clear that some classes must be accessible for some user
groups only while others both contain functions available to everybody and functions
available to specific user groups only. The universal class handling use case validation
is chosen to take care of user validation too. A database is used to store information
about functions’ availability to user groups.

Validating users is only a poor security if any information about usernames or
passwords is intercept by unauthorized persons on the Internet. Thus it would be
preferable to implement part of the control room using a secure communication method.

3.3.3 Input validation
The third criterion weighted very high is input validation. Any user input must be
checked to be sure that illegal or even damaging information is not entered. The
problem must be taken care of by the individual scripts. An input validation class will
contain functions for the validations.

 Overall web page structure

 37

3.4 Overall web page structure
The overall structure consist of two elements: Group definition and class diagram of the
system

3.4.1 Groups
In the analysis four groups where found. The organization of the group is a hierarchical
structure and depicted in figure 3.1.

Figure 3.1 Structure of the group organization

The structure divides the groups into three levels, where a higher level means less
restrictions. A unique number identifies each group.

Number Group
1 Admin
2 Mission Control Staff
3 Scientific Staff
4 Public

3.4.2 Class diagram
Based on the analysis and the previous discussion an overall class diagram of the
system is designed and the result is shown in figure 3.2.

HTML

+InputValidation()
+email()
+telephone()
+number()
+username()
+password()
+text()

InputValidation

+Page()

Page

+Database()

Database

1

1

GUI

1

1

1

1

+SystemLog()
+errorHandler()
+error()
+info()
+download()
+view()

SystemLog

1

1

+UserControl()
+addUser()
+changeGroup()
+changePassword()
+deleteUser()
+logon()
+logoff()
+currentUsername ()
+currentID()
+getUsername()
+currentGroup()
+validate(in group)

UserControl

1

1

+stateSetup()
+classAndFunctionSetup()
+transitionSetup()

ValidationAdministration

1

1

Figure 3.2 Class diagram of the entire system

MCS Admin

SCS

PublicMore restricted

Less restricted

Design

38

The system is designed with a central class Page responsible for executing all functions
in the system. This class is called every time a user wants to perform anything in the
system. All of the criteria found in the previous section in controlled from this class.
This eases maintenance of the system and the validation.

There are five classes associated with this class. First the UserControl class provides the
necessary functionality to control the user validations. This includes logon and logoff
procedures along with validation and administration facilities. Second the SystemLog
class provides functions to collect and store errors and information in the system. The
InputValidation class provides a selection of different methods to validate user input to
the system. The ValidationAdministration class contains functionality to administrate
the valid use of the system. Finally, the Database class creates the link to the database.

In addition, two packages where designed the package GUI is derived from the analyses
and the HTML is designed to provide an easier way to generate the HTML documents.

3.4.3 Test considerations
Before designing the system, some consideration about the way of testing the system
must be performed. There are two important aspects in the test phase:

• Reconstruction of scenarios, which is used to generate errors. This is valuable in
both the testing phase and in the final edition.

• Track the user interaction with the system. This is valuable when error reported
is cause be a specific way of using the system.

In order to perform these tests enough information must be stored in the database. The
problem with this method is the amount of information, which will be stored in the
database. To solve this problem some facility to present the information is needed to
ease the error correction task.

3.5 The classes of the system
In the next subsection, each of the classes is described with a complete function
description and the flow of the complex functions is illustrated with flow charts.

3.5.1 Class Page
The class is responsible for validation of secure communication, users and use cases.
The class provides the necessary checks to achieve some of the design criteria.

In order to execute any task in the system this class is called. The way to execute a
given functionality is specified by a class variable and a function variable. An example
of executing the addUser function in the administrate class is shown below:

http://cubesat/page.php?class=administrate&function=addUser&var=mixed

The field indicates any variables needed in order to execute the functions. Examples of
such could be:

subfunction=showForm
username=Cubesat&password=********

http://cubesat/scripts/page.php?class=administrate&function=addUser&var=mixed

 The classes of the system

 39

If the class and function variable is not specified the system should report an error.

Page flow
The flow in this class is basically build as described in figure 3.3 and table 3.2.

Figure 3.3 Flow diagram of a default script

Task name Description
Access control Validates the user, checks the need for a secure

communication and checks the state transition
Initialize Initialization of the class is needed to create an object and

set of some variables.
Switch A variable named function is received from the user and it

indicates the function to be run. A switch statement is used
to decode the variable and call the appropriate function in
the class.

Functions The decoded function is executed and a result is returned.
Default If the decoded function does not exist, a default

functionality will be called that informs the user about the
error.

Final The final contains functions that are used to end the script,
e.g. html end commands and error handling.

Table 3.2 Description of tasks in a default scripts

The different tasks are described in details in the next sections.

Initialize

Switch($function) Function1

Function2

Default

Final

Access control

Design

40

Access control
The access controlling contains the three validation tests. Upon successfully execution
of the tests, the script continues its flow. The three test systems are described in the next
sections.

Secure communication validation
The system to validate the secure communication is depicted in figure 3.4.

Is secure line needed

Get security specification
from database

Continue executionIs line secure

Yes

End secure line
validation

No

No

Yes

Report the user of
authorization failure

Figure 3.4 Flow diagram of secure communication validation

 The classes of the system

 41

User validation
The flow to validate a user is shown in figure 3.5.

Get number of active
members in group

Reached the limit

Set current user as
active in the group

Inform the user that the
limit is reached

Yes

No

End group
validation

Get group associated
with the user

Figure 3.5 Flow diagram of the user validation

Use case validation
The flow to validate the use case and execute the function requested is depicted in
figure 3.6.

Update state

Validate state
transition

Is transition
valid

Execute function

Yes

Warn user

No

End use case
validation

Figure 3.6 Flow diagram of the use case validation

Design

42

Initialize, switch, function and finalize
The initialize section instantiates the requested class and prepare it for execution. The
functions switch, function and default are implemented as part of PHP. Thereby the
implementation is easier. The execution flow in depicted in figure 3.7.

Is the class
variable specified

Does the class
file exists

Include the
class file

Does the file
contains the class

definition

Is the function
variable defined

Create an instance of
the class

Yes

Yes

Yes

Is the function
present in the

class

Yes

Execute the function

Yes

Finalize

End execution

Report the error

No

No

No

No

No

Figure 3.7 Execution of the initialization, functionality and finalization sections

 The classes of the system

 43

Validation table
The three security checks need information about what is allowed. This information is
stored in one table in the database. table 3.3 describes the seven columns necessary to
store the information asked for. It is chosen to store the information in a database to
make the Page script general. In this manner, no information about the rest of the scripts
is stored in the page script.
Fieldname Type Special Nullable Description
id int Primary key No Row identification
class varchar(64) No The class containing the function

to be called.
function varchar(64) No The name of the function to be

called.
currentstate varchar(64) No The state from which it is allowed

to call the function specified by
class and function.

newstate varchar(64) No The state obtained after execution
of the function.

ssl Enum(‘Y’, ‘N’) No Indicates if a secure line is
needed for the function to be
executed.

groupID tinyint No Indicates which group the user
must be to execute the function
specified by class and function.

Table 3.3 Security validation table description

The way the table is created means that a function in a class may be represented in more
than one entry. This is due to the fact that some functions may be called from different
states and as the state column only specifies one state more entries are needed. table 3.4
shows a case where this is needed.

class function currentstate newstate ssl groupID
Image selectPicture PreviewPicture ShowPicture False 4
Image selectPicture Resultpage ShowPicture False 4

Table 3.4 Example of security validation table

Another aspect of concern when repeated function entries are possible is inconsistence
of the SSL and groupID column. If a function is represented more than once the SSL
and groupID data must be exactly the same for every entry. This problem must be taken
care of by the administrator of the table. The validation administration tool avoids this
problem. However it is possible to insert data manually in the database resulting in
inconsistency.

3.5.2 Class Input validation
The input validation class contains functions that validate input. This means checking
string lengths, confirming presence or absence of certain characters in a string or
verification of valid date input etc. Such auxiliary functions are developed throughout
the implementation. The specific functions are not described.

Design

44

3.5.3 Class UserControl
This class controls all the user validation and identification. The class uses the
user_control table in the database to store the information of each user. The specific
table design in described in table 3.5

Fieldname Type Special Nullable Description
Id int Primary key No Row identification
Username char(32) No The username of the user
Password char(32) No The password of the user
Firstname char(50) No First name of the user
Lastname char(50) No Last name of the user
Email char(50) No Email of the user
Mailinglist char(34) No Specifies if the user wants the

information mail
Phonenr char(50) No The phonenumber of the user
Session_id char(32) Yes The current browser session

identification. The field is indicating
the logon status. An empty field
means logged out

Timeref Bigint Yes The field is a timestamp of the last
activity

GroupId Int No Group which the user is member of
CurrentGroupId Int Yes The group the user is logged into.

This field only differs from the
groupId if a second MCS tries to log
onto the system. Then the user is
logged on as SCS.

LogonTimes int No Records the number of times the
user has performed successful a
logon

LastLogon bigint No A timestamp indication the last time
the user has logged onto the system.

Table 3.5 User control table description

Functions in this class
All functionality is available anywhere.

void addUser()
Inputs username – The wanted username

password – The wanted password
group – The group attached to the user
firstname – The first name of the user
lastname – The last name of the user
email – The email attached to the user
telephone – The telephone of the user

Complexity Low
Category Update
Trigged / called by System
Description Add a new user to the database

 The classes of the system

 45

void changeGroup()
Inputs id – The database identification of the user

group – The group to change to
Complexity Low
Category Update
Trigged / called by System
Description Changes the group of the specified user

void changePassword()
Inputs id – The database identification of the user

password – The new password
oldpassword – The old password of the user

Complexity Low
Category Update
Trigged / called by System
Description Changes the password of a given user

void deleteUser()
Inputs id – The database identification of the user
Complexity Low
Category Update
Trigged / called by System
Description Delete the specified user from the database

string logon()
Inputs username – the name of the user logging on

password – the password given by the user
Complexity Middle
Category Update
Trigged / called by System
Description Logges on a user to the system and ensures

only one MCS to log on. A flow chart of this
function is depicted in figure 3.8

Design

46

Logout all users which
cross the timeout

Does the username
and password exists

Browser.sessionId ==
User.sessionId

Result = ’Username does
not exists’

User.group = MCS Lock the table for read
and write operations

Log on as SCSIs a MCS logged on

Log on as MCS

Log on as user.group

Unlock the table

End Logon

Figure 3.8 Flowchart of the logon function

void logoff()
Inputs None
Complexity Low
Category Update
Trigged / called by System
Description Loges the user out of the system

string currentUsername()
Inputs group – the name of the user logging on
Complexity Low
Category Read
Trigged / called by System
Description Return the username of the current user

 The classes of the system

 47

int currentID()
Inputs None
Complexity Low
Category Read
Trigged / called by System
Description Return the database identification of the

current user

string getUsername()
Inputs Id – The database identification of the user
Complexity Low
Category Update
Trigged / called by System
Description Return the username identified by the provided

id

int currentGroup()
Inputs None
Complexity Low
Category Update
Trigged / called by System
Description Returns the group associated with the current

user

int validate()
Inputs group – Specifies the group which the user

must be a member of
Complexity Middle
Category Update
Trigged / called by System
Description Validate the group of the current user with the

group necessary to execute the functionality

Design

48

Logout all users which
cross the timeout

Resets the timeout of the
current user

group = Public Result = Public

Get user associated with
the browser session

identification

User found

Group = SCS Result = SCS

User.group == Group Report an errror

Result = Group

End validate user

Yes

No

Yes

No

Yes

No

Yes

Report an errrorNo

Figure 3.9 Flowchart of the validate function

3.5.4 Class Systemlog
This class provides the functionality to store generated errors in the system. The basic
idea with this class is to store enough information in the database and the present it to
the developer which is trying to correct the errors. table 3.6 shows the definition of the
table used to store the information.

 The classes of the system

 49

Fieldname Type Special Nullable Description
id bigint Primary key No Row identification
dateAndTime datetime No Date and time
currentState varchar(40) No The state variable
linenumber Int No Line number of error

occurrence
sourcefile varchar(255) No Source file of the script

generating the error
parameters text Yes Parameters send to the script
remoteIP varchar(15) No Ip address of the remote

client
sessionID varchar(32) No The identification of the

browser
messageType enum(‘Info’,

‘Warning’,
‘Error’)

 No The type of the message

browserType varchar(60) No The type of the browser
sending the request

secureLine enum(‘Y’, ‘N’) No Current secure line status
userId bigint user_control.id No Reference to the

user_control table
function varchar(30) No The function executed
class varchar(30) No The class executed
message Text No User defined message

Table 3.6 Definition of the Syslog table

Functions
The functions in the syslog class are described in this section.

void error()
Inputs condition – when this variable is true an error

in function call exist
line – The line in the file that error exists
file – The name of the file that is broken
error – Error message sent to the user.

Complexity Simple
Category Update
Trigged / called by system
Description If an error originates this function is called and

the function calls the info function that writes
an error entry in the syslog database

Design

50

void info()
Inputs Line – The Line in the file to be logged

File – The file name that is logged
Message – The message to be written to
database
MessageType – The type of the message to
store (Info)

Complexity Complex
Category Update
Trigged / called by System
Description When the system is in debug mode or if an

error exists the info function writes to syslog
database. It also writes information to the
screen when an error exist

void view()
Inputs None
Complexity Complex
Category Read
Trigged / called by User
Description This function reads information from the

database and writes them to the screen

void download()
Inputs None
Complexity Simple
Category Read
Trigged / called by User
Description With use of this function it is possible to

download a log file

3.5.5 Class Validation Administration
This class is an administrative tool used to manage the use case tables that has to be
implemented. To make the administration more manageable the tool is divided into
three parts. The division means that functions, states and transitions are handled in
separate windows and database tables.

Table 3.7 through table 3.9 depicts the tables used in the validation administration.
Table 3.7 and table 3.8 are simple and contain both a primary key and a name field to
represent states and classes in the system. The “class” table represents a number of
tables dynamically created during use of the administration tool. These tables will be
named after the classes added to the class table. The fields in the table specify the name
of functions in a class, if a secure line is needed to call the function and what group
level the user must logged in as to execute the function. Finally the validation table
described in table 3.3 is used to store transitions.

Fieldname Type Special Nullable Description
Sid Int Primary key No State identification
name Varchar(64) No Name of a state

Table 3.7 States table

 The classes of the system

 51

Fieldname Type Special Nullable Description
Cid Int Primary key No Class identification
Name Varchar(64) No Name of a class

Table 3.8 Classes table

Fieldname Type Special Nullable Description
Fid Int Primary key No Function identification
functionname Varchar(64) No Name of a function
SSL Emun(‘Y’, ‘N’) No Specifies if a secure line in needed
GroupID Tinyint No Specifies the group access level

Table 3.9 “class” table

The following function description goes into details about the three parts of the
administration tool.

Class and function setup
void classesAndFunctionSetup()
Inputs None
Complexity Complex
Category Read
Trigged / called by User
Description This function generates the GUI that enables

the user to add and delete classes and
functions. Furthermore it generates a table
containing classes and their functions

void addClass()
Inputs classStr – the name of the class to add
Complexity Simple
Category Update
Trigged / called by User
Description This function is called when the users wants to

add a new class. The function adds a class to
the class table and creates a new table named
as the class itself

void deleteClass()
Inputs classChoice – specifies the class to be deleted
Complexity Medium
Category Update
Trigged / called by User
Description The class specified is deleted from the class

table, the table containing the class’ functions
is deleted and every state transition associated
with the class is deleted from the validation
table

Design

52

void addFunction()
Inputs functionStr – the name of the function

functionclasschoice – the class to add the
function to
sslneeded – specifies is a secure line is
needed to execute the function
groupIDchoice – specifies the group access
level

Complexity Simple
Category Update
Trigged / called by User
Description A function is added the table named by the

class containing the function. This includes
information about the necessity of secure line
and group access level

void deleteFunction()
Inputs functionChoice – specifies the function to be

deleted
Complexity Medium
Category Update
Trigged / called by User
Description The function specified is deleted from the

database. Any transition in the validation table
associated to the function is also deleted

State setup
void stateSetup()
Inputs None
Complexity Medium
Category Read
Trigged / called by User
Description This function generates the GUI that enables

the user to add and delete states. Furthermore
it generates a table containing every state
entered

void addState()
Inputs stateStr – the name of the state

classChoice – the class associated to the state
Complexity Simple
Category Update
Trigged / called by User
Description The function adds a state to the state table

 The classes of the system

 53

void deleteState()
Inputs stateChoice – specifies the state to be deleted
Complexity Medium
Category Update
Trigged / called by User
Description The state specified is deleted from the state

table and every state transition associated with
the state is deleted from the validation table

Transition setup
void transitionSetup()
Inputs None
Complexity Complex
Category Read
Trigged / called by User
Description This function generates the GUI that enables

the user to add and delete transitions.
Furthermore it generates a table containing all
transitions in the database

void addTransition()
Inputs classChoice – the class containing the function

that results in the transition
functionChoice – the function resulting in the
transition
currentstateChoice – The required state before
the function call
newstateChoice – the state obtained after the
function call

Complexity Simple
Category Update
Trigged / called by User
Description The function adds a transition to the validation

table by the means of the information given in
the parameters

void deleteTransition ()
Inputs transitionChoice – specifies the transition to be

deleted
Complexity Simple
Category Update
Trigged / called by User
Description The transition specified is deleted from the

validation table

3.5.6 GUI Package
This package consist of all the classes found in the section ‘2.2.3 Overview of the
system’ in the analysis. Only the classes Image, Flightplan, SatLog and Administrate
are described in the next section

Design

54

Class Image
This class provide all the functionality to gain access the images gather by the satellite.

void Image()
Input None
Complexity Simple
Category Update
Trigged / called by All
Description The constructor, setup the default variables

and create the default look for the image class

void create()
Input None
Complexity Simple
Category Update
Trigged / called by Administrator
Description Creates the database table where images will

be save

void mailingList()
Input email – The email address

button – subscribe and unsubscribe
Complexity Medium
Category Read
Trigged / called by Public, Administrator, MCS and SCS
Description This function will send an email where it is

possibly to reply this email to subscribe or
unsubscribe the mailing list

void newestPicture()
Input None
Complexity Simple
Category Read
Trigged / called by Public, Administrator, MCS and SCS
Description This function views the newest picture from the

database

void preview()
Input id – picture ID for largest picture view
Complexity Simple
Category Read
Trigged / called by Public, Administrator, MCS and SCS
Description Gives a full view of all pictures in the database

and make it possibly for the user to look at one
picture in full size

 The classes of the system

 55

void searchForPicture()
Input searchType – Search specification

search – Search string
Complexity Medium
Category Read
Trigged / called by Public, Administrator, MCS and SCS
Description It is possibly to search the database for

specific picture

void subscribe()
Input code – Identification of the user
Complexity Medium
Category Update
Trigged / called by Public, Administrator, MCS and SCS
Description When replying to the subscribe email this

function will be called. The user are identify by
the code variable

void unsubscribe()
Input code – Identification of the user
Complexity Medium
Category Update
Trigged / called by Public, Administrator, MCS and SCS
Description When replying to the unsubscribe email this

function will be called. The user are identify by
the code variable

void viewFuturePositions()
Input None
Complexity Medium
Category Read
Trigged / called by Public, Administrator, MCS and SCS
Description This function will make it possibly to view

future position where a picture will be taking

Class SatLog
The SatLog is the log for the satellite. This class presents log information filtered by
patterns set up by the user.

The class SatLog is designed to use a single table in the database. This table is defined
as follows:

Fieldname Type Special Nullable Description
Id int Primary key No A unique id
timestamp datetime No The time it

happened
logType enum (‘debug’,

‘error’,’status’)
 No The type of log entry

systemName enum(‘ACS’,’CAM’,
’COM’,’OBC’,’PWS’)

 No The name of the
system

Design

56

The class satLog has three functions. A public function named satLog, a public function
named main and a private function named printLog that presents information to the
user.

void satLog()
Input None
Complexity Simple
Category Constructor
Trigged / called by page.php
Description This function is a kind of constructor for the

satLog class, and it generates header
information for the satLog page in the cubesat
system

void main()
Input None
Complexity Medium
Category Read
Trigged / called by User
Description This function generates the GUI for the satLog.

It also extracts data from the database
according to some criteria’s specified by the
user. The result is sent to printLog

void printLog()
Input result – The result from the SQL-query in the database

logType – What type of logs there is searched for
systemName - What type of system there is searched for
sortField – What field the output should be sorted by
sortOrder – What order it should be sorted in
intevalBegin – The start of an eventual time inteval
intevalEnd - The end of an eventual time inteval
choice – Contain the selected choice – should the result
be shown on screen or saved in a text file

Complexity Simple
Category Update
Trigged / called by satLog->main()
Description This function present log information on the screen from

results provided by satLog->main()

 The classes of the system

 57

Class FlightPlan
This class is the part of the system, which is used to manage the flight plan. It was
derived in the analysis on page 20. The fields of the flightPlan table are described in
table 3.10.
Fieldname Type Special Nullable Description
Id mediumint Primary

key
No Task identification

userID int No Id of the user who has
created or edited the task

state enum('created',
'approved',
'uploaded', 'failed',
'succed',
'failedupload')

 No The current state of the
task

taskType enum('getStatus',
'takePicture',
'setACSMode')

 No The type of the task

timeOfFirstExecution Datetime No Time of first execution of
the task

periodicTask int unsigned Yes Time between executions,
if 0 non-periodic task

parameters Mediumblob Yes Parameters to the task
comment varchar(255) Yes The users comment to the

task

Table 3.10 flightPlan table

In the following tables the functions of the class flightPlan is described:
void create()
Inputs None
Complexity Simple
Category Update
Trigged / called by User
Description This function is called when the user wants to

create a new task. The function parses the
control to the function editForm

void edit()
Inputs id – the id of the task which is to be edited
Complexity Simple
Category Update
Trigged / called by User
Description This function is called when the user wants to

edit an existing task. The function tests if the
task is in the state ‘created’. If this is the case
the function editForm is called. Else, nothing
happens

Design

58

void remove()
Inputs id – the id of the task which is to be edited
Complexity Simple
Category Update
Trigged / called by User
Description This function is called when the user wants to

remove a task from the flight plan. The function
tests whether the task is in the state ‘created’.
If this is the case then the task is deleted. Else,
nothing happens

void approve()
Inputs None
Complexity Simple
Category Update
Trigged / called by User
Description This function is called when the user wants to

approve the flight plan. The function updates
all tasks, which are in the state ‘created’ and
changes their state to ‘approved’

void unapprove()
Inputs None
Complexity Simple
Category Update
Trigged / called by User
Description This function is called when the user wants to

unapprove the flight plan. The function updates
all tasks, which are in the state ‘approved’ and
changes their state to ‘created’

void editForm()
Inputs id: The id of the task that is to be edited. If

NULL a new task is created
Complexity Medium
Category Read
Trigged / called by Function edit, function create
Description This function is called when the user wants to

edit or create a task and it generates a form for
specifying a task. When a task is to be created
the function is called with no parameters and
an empty form is displayed. If a task id is
specified an existing task is extracted from the
database and the data is displayed in the form.
The layout of the form will depend on the
selected task type such that the input fields will
reflect the actual task type

 The classes of the system

 59

void ok()
Inputs id – the id of the task which is to be edited

taskType – the selected task type
timeOfFirstExecution – time of first execution
of the task
periodicTask – time between executions, if 0
non-periodic task
parameter – parameters to the task
comment – the users comment to the task

Complexity Medium
Category Update
Trigged / called by User
Description This function is called when the user presses

ok in the editForm. The function verifies the
input from the editForm and stores it in the
database

Class Administrate
This class provide all the functionality to administrate the users of the system.

void addUser()
Input None
Complexity Simple
Category Read
Trigged / called by All
Description Display a form with the necessary input in

order to create a user. Upon failed input
validation the form is displayed with the current
valid input from the user

void acceptUser()
Input None
Complexity Simple
Category Update
Trigged / called by All
Description Validate the input and adds the new user to

the database. Upon failed validation the
function addUser is called

void viewUser()
Input None
Complexity Simple
Category Read
Trigged / called by All
Description Displays the current users in the system

together with options to delete, change
password and change group

Design

60

void deleteUser()
Input None
Complexity Simple
Category Read
Trigged / called by All
Description Display a form to confirm deletion of a specific

user

void confirm()
Input None
Complexity Simple
Category Update
Trigged / called by All
Description Perform the deletion of the specified user

void changeGroup()
Input None
Complexity Simple
Category Read
Trigged / called by All
Description Displays a form where a new group for the

selected user can be chosen

void acceptGroup()
Input None
Complexity Simple
Category Update
Trigged / called by All
Description Changes the group of the selected user

void changePassword()
Input None
Complexity Simple
Category Read
Trigged / called by All
Description Displays a form where the old and new

password of the selected user can be entered

void acceptPassword()
Input None
Complexity Simple
Category Update
Trigged / called by All
Description Changes the password of the selected user

upon correct input validation

 The classes of the system

 61

void viewStatistics()
Input None
Complexity Simple
Category Update
Trigged / called by All
Description Display some statistics for each users

void cancel()
Input None
Complexity Simple
Category Update
Trigged / called by All
Description Cancels any given changing operation

3.5.7 HTML Package
This packages provides functions to generate html output to the browser. It is designed
with the idea of easier maintenance when working with different web-browsers. The
system is designed to work with the browsers: Opera 6, Netscape 6.2 and Internet
Explorer 6.0.

Class description
The package is divided into 5 classes which is shown in figure 3.10 and described in
table 3.11

+HTMLHeader()
+styleSheet()
+refresh()
+target()
+title()
+noCache()
+expires()
+sendHeader()

-data
-stylesheet
-refresh
-target
-title
-cache

HTMLHeader

+HTMLFooter()

HTMLFooter

+HTMLTable ()
+addRow()
+addData()
+endTable()

-data
-rowcreated

HTMLTable

+HTML()
+center()
+title()
+subtitle()
+section()
+line()
+text()
+br()

HTML

+HTMLForm()
+addInputHidden()
+addInputText()
+addInputPassword()
+addInputSubmit()
+addInputRedirect()
+addInputRadio()
+addInputCheckbox()
+addInputSelect()
+sendForm()
+endForm()

-formname
-data

HTMLForm

Figure 3.10 Class diagram of the HTML package

Class name Description
HTMLHeader This class is responsible for sending a default HTML-document

header to the browser. It guaranties that only one header is sent to
the browser and that it always is sent

HTMLFooter This class send the default HTML document footer. It guaranties
that only one footer is sent to the browser and that it always is sent

HTML This class provides different functionalities to draw items in a HTML
document

HTMLTable This class provides functionality to draw tables on the webpage
HTMLForm This class provides functionality to generate HTML-Forms

Table 3.11 Class description of the HTML package

The different functions in the classes is not described in this document.

Test Results

62

4 Test Results
Selected test scenarios are presented in the following sections.

4.1 Use Case Test
A test scenario for use case validation consists of a number of successive function calls.
Figure 4.1 shows such a scenario.

Administrate

AddUserForm

ViewUsers

Statistics

ChangingPassword

ChangingGroup

DeletingUser

Public

acceptUser

changePassword

changeGroup

deleteUser

confirm

acceptGroup

acceptPassword

viewStatistics

addUser

viewUsers

cancel

cancel

cancel

cancel

Figure 4.1 Scenario for use case test

Starting with a call of the function addUser a sequence of five legal calls is performed,
ending up in the state ViewUsers. The dashed line exiting this state represents the call
of the function viewStatistics, which may be executed from any state. In the state
obtained after execution a call of the function changePassword is tried – depicted by the
second dashed line to the ViewUser state. This should result in an illegal state transition
error.

The result of the test is shown in table 4.1, which contains relevant entries singled out
from the log. As expected, the first six function calls were carried out successfully while
the last one was detected as illegal.

Message
State changed correct (Welcome -> AddUserForm)
State changed correct (AddUserForm -> ViewUser)
State changed correct (AddUserForm -> ViewUser)
State changed correct (ViewUser -> ChangeGroupForm)
State changed correct (ChangeGroupForm -> ViewUser)
State changed correct (ViewUser -> Statistics)
State changed incorrect (Statistics -> ChangePasswordForm)
 Required: ViewUser

Table 4.1 Log results from use case test

 Secure Communication Test

 63

4.2 User Validation Test
To test the user validation three types of scenarios are needed. First, a member of the
MCS calls a function related to the flight plan. Because MCS is, the only user group
allowed accessing the flight plan this should be legal. As expected, the log shows that
the user group is correct for the function call.

Name Value
Class FlightPlan
Function viewFlightPlan

Message User group is correct (Group required: MCS)
Group MCS

Table 4.2 Log result from user validation

Next, an example of a function call that should not be allowed by the validation system
is considered. The scenario in this case is a MCS trying to administrate the users of the
system. Like before the log in table 4.3 shows that the unintended use of the system is
avoided by the validation system.

Name Value
Class Administrate
Function viewUsers

Message User group is incorrect (Group required: Admin)
Group MCS

Table 4.3 Log result from user validation

Finally, it is tested whether or not the limitation on the number of active group members
is respected. The scenario for this test is as follows: One MCS is logged on and another
tries to get access. In the case of a distributed control room for a small-satellite, this
situation is avoided by informing the user about the problem and granting the user
access as a lower prioritized group. table 4.4 shows that the validation system takes care
of this situation.

Name Value
Class Logon
Function dologon

Message Group has changed
(Mission Control Staff -> Scientific Staff)

Table 4.4 Log result from user validation

Test Results

64

4.3 Secure Communication Test
Test of the encryption of the communication is divided into four scenarios. Each
scenario is specified by the needs for and the presence of encrypted communication.
The scenarios are represented in table 4.5 along with the results of the test. The test
result fulfilled the expectations

Class Function SSL

Needed
SSL

Present
Access Result

Administrate viewUsers Y Y Y Communication is correctly (SSL required: Y)
Administrate viewUsers Y N N Communication is incorrect (SSL required: Y)
Image Preview N Y Y Communication is correctly (SSL required: N)
Image Preview N N Y Communication is correctly (SSL required: N)

Table 4.5 The encryption communication scenarios and the test results

 Protocol: HTTP (Hypertext transfer protocol)

 65

Appendix I Protocol: HTTP (Hypertext transfer protocol)

Abstract:
The Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed,
collaborative, hypermedia information systems. It is a generic stateless protocol which
can be used for many tasks beyond its use for hypertext, such as name servers and
distributed object management systems, through extension of its request methods, error
codes and headers. A feature of HTTP is the typing and negotiation of data
representation, allowing systems to be built independently of the data being transferred.

Type Description
Platform
independencies

Yes

Real time requirement None
Security No support
Proxy compatible HTTP-Compatible proxy
Secure send / receive
acknowledgement

Controlled by lower protocols

Broadcast compatible No.
Combinable Yes. Many known protocols is combined with

this protocol
Dependencies None
Type of protocol Transfer protocol
Media ACSII

References
http://www.ietf.org/rfc/rfc2616.txt

Protocol: RMI

66

Appendix II Protocol: RMI

Abstract:
The design goal for the RMI architecture was to create a Java distributed object model
that integrates naturally into the Java programming language and the local object model.
RMI architects have succeeded; creating a system that extends the safety and robustness
of the Java architecture to the distributed computing world.

Type Description
Platform independent
(Windows, Linux)

Yes – as platform independent as Java itself.

Real time requirement No
Security (Does it
support it)

Yes - using a security manager guarantees
that classes are loaded from a “trusted”
source.

Proxy compatible
(HTTP)

Yes - The RMI call data is sent outside as the
body of an HTTP POST request, and the
return information is sent back in the body of
the HTTP response.

Secure send / receive
acknowledgement
(TCP/UDP)

Uses TCP, but UDP could be implemented.

Broadcast compatible Yes - With Java MulticastSocket
Combinable
Dependencies The current transport implementation is TCP-

based (using Java sockets), but a transport
based on UDP could be substituted 1) System

Architecture - Overview.
Type of protocol
(Data transfer
specification)

Data protocol

Media
(ASCII/BINARY)

Reference
http://engronline.ee.memphis.edu/AdvJava/Lectures/rmi_spec.htm

http://developer.java.sun.com/developer/onlineTraining/rmi/RMI.html#IntroRMI

 Protocol: RPC (Remote Procedure Call)

 67

Appendix III Protocol: RPC (Remote Procedure Call)

Abstract:
This document specifies a message protocol used in implementing Sun's Remote
Procedure Call (RPC) package. The message protocol is specified with the eXternal
Data Representation (XDR) language [9]. This document assumes that the reader is
familiar with XDR. It does not attempt to justify RPC or its uses. The paper by Birrell
and Nelson [1] is recommended as an excellent background to and justification of RPC.

Type Description
Platform
independencies

Yes

Real time requirement None
Security Yes, Using authentication protocols white

DES encrypting.
Proxy compatible No
Secure send / receive
acknowledgement

Yes, using TCP protocol

Broadcast compatible No
Combinable None
Dependencies
Type of protocol Authentication message protocol
Media Binary

References
ftp://ftp.isi.edu/in-notes/rfc1050.txt

Protocol: SOAP-Protocol

68

Appendix IV Protocol: SOAP-Protocol

Abstract:
SOAP version 1.2 is a lightweight protocol for exchange of information in a
decentralized, distributed environment. It is an XML based protocol that consists of four
parts: an envelope that defines a framework for describing what is in a message and
how to process it, a set of encoding rules for expressing instances of application-defined
data types, a convention for representing remote procedure calls and responses and a
binding convention for exchanging messages using an underlying protocol. SOAP can
potentially be used in combination with a variety of other protocols; however, the only
bindings defined in this document describe how to use SOAP in combination with
HTTP and the experimental HTTP Extension Framework.

Type Description
Platform
independencies

Yes

Real time requirement None
Security XML Encryption

• Elementvise encryption
• Document encryption

Proxy compatible Yes through lower protocols e.g. HTTP
protocol

Secure send / receive
acknowledgement

Yes through lower protocols e.g. TCP
protocol

Broadcast compatible No
Combinable None
Dependencies HTTP Protocol
Type of protocol Data protocol
Media ASCII

References
http://www.w3.org/TR/2001/WD-soap12-20010709/

 Protocol: SSL-Protocol

 69

Appendix V Protocol: SSL-Protocol

Abstract:
This document specifies Version 3.0 of the Secure Sockets Layer (SSL V3.0) protocol,
a security protocol that provides communications privacy over the Internet. The
protocol allows client/server applications to communicate in a way that is designed to
prevent eavesdropping, tampering, or message forgery.

Type Description
Platform
independencies

Yes

Real time requirement None
Security Provide a secure channel, controlled with

server certificates and maybe client
certificates

Proxy compatible Yes. Known proxies is HTTPS
Secure send / receive
acknowledgement

Controlled by lower protocols

Broadcast compatible No. The protocol is specific designed to peer
to peer connections

Combinable Yes. A known protocol is the HTTP Protocol
Dependencies None
Type of protocol Security protocol
Media BINARY

Place in OSI model

References
ftp://ftp.isi.edu/in-notes/rfc2104.txt

http://docs.iplanet.com/docs/manuals/security/sslin/

Protocol: VPN (Virtual Private Network)

70

Appendix VI Protocol: VPN (Virtual Private Network)

Abstract:
VPNs offer enterprise-scale connectivity deployed on a shared infrastructure with the
same policies enjoyed in a private network. These policies include security,
prioritization, reliability, and end-to-end management. A VPN can be deployed over the
Internet or built on a service provider's existing IP, Frame Relay, or ATM infrastructure.

VPNs based on IP can naturally extend the ubiquitous nature of intranets---over wide-
area links, to remote offices, to mobile users, or to telecommuters. Further, they can
extend extranets to communities of interest outside the organization linking business
partners, customers, and suppliers, to provide better customer satisfaction, market
differentiation, and reduced manufacturing costs.

The three basic types of VPNs are Access VPNs, Intranet VPNs, and Extranet VPNs.
Access VPNs appeal to a highly mobile work force, handling remote-access
connectivity for mobile users, telecommuters, and small offices through a broad range
of technologies

Type Description
Platform
independencies

Yes

Real time requirement None
Security Yes, Using DES encrypting.
Proxy compatible Yes, using HTTP protocol
Secure send / receive
acknowledgement

Yes, if TCP protocol is used

Broadcast compatible Yes
Combinable All types of transport protocols e.g. HTTP,

TCP, UDP
Dependencies “HTTP”
Type of protocol Data protocol
Media Binary

References
http://www.cisco.com/warp/public/cc/cisco/mkt/servprod/dial/justify/profiles/avpnn_bc.
htm

http://www.cisco.com/warp/public/cc/sol/mkt/ent/vpne/tech/qsvpn_wp.htm

http://comet.columbia.edu/research/architectures/VPN.html

 Protocol: XML-Protocol

 71

Appendix VII Protocol: XML-Protocol

Abstract:
The Extensible Markup Language (XML) is a subset of SGML that is completely
described in this document. Its goal is to enable generic SGML to be served, received,
and processed on the Web in the way that is now possible with HTML. XML has been
designed for ease of implementation and for interoperability with both SGML and
HTML.

Type Description
Platform
independencies

Yes

Real time requirement None
Security XML Encryption

• Elementvise encryption
• Document encryption

Proxy compatible Yes through lower protocols e.g. HTTP
protocol

Secure send / receive
acknowledgement

Yes through lower protocols e.g. TCP
protocol

Broadcast compatible Depending on the lower protocols.
Combinable No.
Dependencies None
Type of protocol Data protocol
Media ASCII

Reference
http://www.w3.org/TR/2000/REC-xml-20001006

http://www.w3.org/TR/xmlenc-core/

Protocol: XMLRPC (Remote Procedure Call over XML
protocol)

72

Appendix VIII Protocol: XMLRPC (Remote Procedure
Call over XML protocol)

Abstract:
It's a spec and a set of implementations that allow software running on disparate
operating systems, running in different environments to make procedure calls over the
Internet.
It's remote procedure calling using HTTP as the transport and XML as the encoding.
XML-RPC is designed to be as simple as possible, while allowing complex data
structures to be transmitted processed and returned.

Type Description
Platform
independencies

Yes

Real time requirement None
Security Yes, Authentication when RPC connects are

made
Proxy compatible Yes, over HTTP protocol
Secure send / receive
acknowledgement

No

Broadcast compatible No
Combinable None
Dependencies XML and HTTP
Type of protocol Message protocol
Media Text

References
http://www.xmlrpc.com/

	Introduction to the worksheets
	T
	Table of contents
	List of figures
	Figure 1.1 Structure of a typical ground segment	9
	Pre-analysis
	What is a ground segment?
	Users
	Data
	The AAU CubeSat ground segment
	System definition

	Analysis
	Component diagram for the system
	Graphics user interface
	Users
	Display structure
	Overview of the system
	Class Status
	Class MissionStatus
	Class Menu
	Class Logon
	Class Information
	Class Image
	Class SatLog and class Housekeeping
	Class MemoryManager
	Class FlightPlan
	Class Administrate

	CubeSat database
	The tables
	Table Kepler
	Table Log
	Table Housekeeping
	Table FlightPlan
	Table Image
	Table UserControl
	Table Configuration

	Communication manager
	Class diagram for the communication manager
	State diagrams for the classes in the communication manager
	CubeSatDatabase
	SatCom
	T55xProtocol

	Functions
	Class SatCom
	Class T55XProtocol

	Design
	Primary objective design criteria
	Web page design
	Fulfilling design criteria
	Use case validation
	User validation
	Input validation

	Overall web page structure
	Groups
	Class diagram
	Test considerations

	The classes of the system
	Class Page
	Page flow
	Access control
	Secure communication validation
	User validation
	Use case validation

	Initialize, switch, function and finalize
	Validation table

	Class Input validation
	Class UserControl
	Functions in this class

	Class Systemlog
	Functions

	Class Validation Administration
	Class and function setup

	GUI Package
	Class Image
	Class SatLog
	Class FlightPlan
	Class Administrate

	HTML Package
	Class description

	Test Results
	Use Case Test
	User Validation Test
	Secure Communication Test
	
	Abstract:
	References
	Abstract:
	Reference
	Abstract:
	References
	Abstract:
	References
	Abstract:
	Place in OSI model
	References
	Abstract:
	References
	Abstract:
	Reference
	Abstract:
	References

