Faculty of Engineering and Science

Aalborg University

Department of Control Engineering

TITLE:

AAU CubeSat Communication
Software

PROJECT PERIOD:
D5,
4. September - 20. December, 2001

PROJECT GROUP:
D5-555

GROUP MEMBERS:
Thorkild Guldager Sgrensen
Kim Led Bendtsen
Michael Sig Birkmose
Jakob Ngrskov
Frederik Olesen

PROJECT SUPERVISOR:
Anders P. Ravn

COPIES: 8
REPORT PAGES: 132
TOTAL PAGES: 154

SYNOPSIS:

This report describes the develop-
ment of the communication software
for the AAU CubeSat. The com-
munication software is responsible
for transferring data from the satel-
lite to the ground station (Teleme-
try) and for receiving data from the
ground station (Telecommand).
The AX.25 data-link protocol
widely used in the radio amateur
community is used as the basis of
the communication protocol. To
provide functions such as: Pause,
resume, prioritizing etc. a com-
bined session and transport layer,
denoted as Th5X layer, is analyzed,
designed, modeled, implemented
and tested.

The development process covers the
following subjects: Design of a com-
munication protocol, modeling, vali-
dation and verification using SDL in
ObejctGEODE and implementation
using C programming.

Preface

This report is a part of a fifth semester project. It has been developed by group D5-
555 in the year 2001, at Aalborg University. The project is part of a larger project at
Aalborg University, called the AAU CubeSat project. The AAU CubeSat project is a
project where groups of students from different departments and semesters on Aalborg
University develop a small satellite. More information about this project can be found
at:

http : | /www.cubesat.auc.dk

This report describes the analysis, design, implementation and test of the communication
software used on the AAU CubeSat.

References are created based on a number referring to an entry in the literature list, e.g
[3]
A CD-ROM is included with this report. It contains source code for the developed

software (including test software) and SDL files for the modeling and verification done.
This report is also included on the disc in different formats.

The group wishes to thank Brian Lodahl (student at Deparment of Communication
Technology at AAU) for his assistance in understanding some of the aspects regard-
ing the hardware considered in this project. Furthermore the group wishes to thank
Flemming Hansen (DSRI) for his help on the link budget, hardware etc.

Michael Sig Birkmose Frederik Olesen

Jakob Ngrskov

Contents

1 Introduction

1.1 Structure of the Report . .

I Mission Analysis

2 Mission Description
2.1 Choice of Mission
2.2 Launch and Orbit

2.2.1 Communication Between Satellite and Ground Station

3 Mission Analysis

3.1 Mission Statement

3.2 System Requirements and Constraints

3.3 System Design.
3.4 Subsystems

3.4.1 Control and Data Handling Subsystem (CDHS)
3.4.2 Attitude Determination and Control Subsystem (ADCS)
3.4.3 Power Supply Unit (PSU)
3.44 Communication Subsystem (CSS)

3.4.5 Payload (camera) .
3.4.6 Ground Station . .
3.4.7 Spacecraft Structure

3.5 Implementation of System

4 Summary

11
11

13

15
15
16
18

19
19
20
20
22
22
23
23
23
24
24
24
24

26

Group 555 CONTENTS
II Analysis 27
5 Communication Subsystem 29
5.1 Satellite Hardware oo 29
51.1 Antenna 29

5.1.2 Transceiver 30

5.1.3 Modem 30

5.2 Ground Station Hardware 31

6 Requirement Specification 32
6.1 System Description Lo 32
6.2 Functionality 33
6.2.1 Tb55X Layer Functionality 33

7 Specific Requirements 36
7.1 Definitionso 36
711 Data e 36

7.1.2 T55X Channel IDo oL 36

7.1.3 T55X Channel Priority 37

7.1.4 Transmit Buffero o000 37

7.1.5 Call-back Functions 37

7.2 Functions 38
7.2.1 System Functions L. 39

7.2.2 General Functionso L o000 39

7.2.3 Channel Functions 41

8 Application Examples 44
8.1 Start Communication 44
82 Send / Receive Data 45
8.3 Time Synchronization 46
8.3.1 Synchronization Description 46

9 Summary 48
December 20, 2001 5

CONTENTS

IIT Design

10 T55X layer
10.1 Overview of TH5X Layer,
10.1.1 TH5X Signals oL
10.2 Functionality
10.2.1 Send Beacono
10.2.2 Connect L
10.2.3 Disconnectl
10.2.4 Pause L
10.2.5 Send Data
10.2.6 Negotiate L
10.2.7 Error Handling oo
10.2.8 Auxiliary Functionality L.,

11 Test Specification
11.1 Environment L.
11.2 Functionality
11.3 Simulation
11.4 Verification
11.5 Validation

12 Design Validation
12.1 Simulation L
12.2 Verificationo
12.3 Validation L

13 Summary

IV Implementation

14 AX.25
14.1 Modifications
14.1.1 Segmenter
14.1.2 Physical Layer.

49

51
51
51
56
57
57
58
99
99
62
65
65

66
66
66
67
67
67

75
75
79
79

84

85

Group 555 CONTENTS
14.1.3 Management Data-linko oL L 88

14.1.4 Data-link 88

14.1.5 Link Multiplexer L. 88

14.2 Platform and Environmento 89
14.3 Common Definitions Lo 89
14.3.1 Data Structureso 89

14.3.2 Constants 90

14.4 OVerview o e 90
14.4.1 Test Specificationo Lo 92

14.5 Reassembler Lo 94
14.5.1 Interfaces L 94

14.5.2 Data Structureso 94

14.5.3 Functions Lo 95

14.5.4 Test Specificationo 98

14.6 Data-link 100
14.6.1 Interfaces L 101

14.6.2 Data Structureso 101

14.6.3 Functions Lo 103

14.6.4 Internal Functions oL 104

14.6.5 Test Specification L. 107

15 T55X 109
15.1 OVerview o L e e e 109
15.2 Modifications 109
15.2.1 Channel 110

15.2.2 TTC o e 110

15.3 Test Specifications Lo 111
16 Test 112
16.1 Segmenter 112
16.1.1 Test Program 112

16.1.2 Test Data-Link Module 113

16.1.3 Result 113

16.2 Reassemblero 114
December 20, 2001 7

CONTENTS

16.2.1 Test Program 114

16.2.2 Test THhX Module 115

16.2.3 Results 116

16.3 Segmenter and Reassemblero, 116
16.3.1 Test Data-link 117

16.3.2 Test THOX e 117

16.3.3 Resultso 118

16.4 Data-linko 118
16.4.1 Test Functions 118

16.4.2 Test Program 120

17 Summary 122
17.1 AX.25 . e 122
17.2 THOX . . o e e 123
V Conclusion 125
18 Project Status 127
18.1 Completed e 127
18.2 Pending Items oo 128

19 Project Course 130
19.1 Development Process 130
19.2 Educational Achievements 131
19.3 Retrospective View 132
VI Appendices 133
A Link Budget 135
A.1 Probability of Erroro 135

B AX.25 138
B.1 Introduction 138
B.1.1 AX.25Model 138

Group 555 CONTENTS
B.1.2 Service Primitives Lo 140

B.2 Frame Structure 143
B.21 FlagField o 143

B.2.2 Address Field 143

B.2.3 Control Field 143

B.24 PID Field 144

B.2.5 Information Field 144

B.2.6 Bit Stuffing o o 144

B.2.7 Frame-Check Sequence 144

B.2.8 Invalid Frames 144

B.2.9 Inter-frame Time Fill 144

B.2.10 Address Field Encoding 145

C ObjectGEODE 146
C.1 Startup File 146
C.2 State Graph 147
C.3 Simulation e 147
C.3.1 Manual Simulation and Random Simulation 147

C.3.2 Verification 148

C.3.3 Validation 148

C.34 MSCTree o i i it e e e 148

C.3.5 Validatingo 149

D OSI Reference Model 150
D.1 The Physical Layer o 150
D.2 The Data-link Layer 0. 150
D.3 The Network Layer L 152
D.4 The Transport Layer 152
D.5 The Session Layer o 152
D.6 The Presentation Layer L. 153
D.7 The Application Layer 153
December 20, 2001 9

Chapter 1

Introduction

The purpose of this project is to analyze, design and implement a protocol for com-
munication between the AAU CubeSat and a ground station. More information about
the AAU CubeSat will be presented in part I of this report. The protocol used for
the communication is the software part of the communication sub-system (CSS) on the
CubeSat. The other distinct part of the subsystem is the hardware: Modems, ampli-
fiers, antennas etc. Building the hardware for the CSS on the AAU CubeSat is not a
part of this project, so only a minor analysis of the hardware will be done in this re-
port. The main focus in the design part of this report will be on modeling and verifying
the protocol in an appropriate tool. For this project the program ObjectGEODE was
chosen, and its syntax and modeling format will be used throughout this report. The
implementation part of the project will only cover the implementation of the protocol
on the AAU CubeSat, the implementation on the ground station is further described in
another report [1].

1.1 Structure of the Report

The first part of this report is a mission analysis for the AAU CubeSat project as a
whole. It describes the CubeSat concept in general and the constraints it puts on the
design and implementation of the satellite. Furthermore the choice of mission for the
AAU CubeSat, and the constraints and requirements it puts on the design, is described.
The mission analysis in this report is an edited version of the one made by group 01gr930.
The original version can be found on the project CD-ROM as:

/mission_analysis/original _mission__analysis.pdf

The second part of the report contains an analysis, following the analysis part of the SPU
development method, described in reference [2]|. First an analysis of the communication
subsystem will be done, this will lead to a requirement specification for the software. To
conclude the analysis more specific requirements will be made, based on the previous
analysis and input from other CubeSat project groups.

11

CHAPTER 1. INTRODUCTION

The third part will be the protocol design following the requirements from the analysis
part. The design part will include both modeling, validation and verification of the
design, this will as already mentioned be done in Object GEODE.

The last part of the report will cover the actual implementation of the protocol to run on
the on-board computer on the AAU CubeSat. Since the initial design was made without
regard to the actual hardware and operating system on the satellite, some changes may

be necessary to make an implementation that works well with the on-board computer
on the AAU CubeSat.

12

Part 1

Mission Analysis

FAW AN B e] V.2

Aalborg University

This part covers the mission analysis for the AAU CubeSat project. Several topics are
considered, first the motivation for developing the AAU CubeSat. Next a mission is
chosen for the satellite and the satellite is divided into smaller subsystems that can be
developed by the different student groups.

13

Chapter 2

Mission Description

The CubeSat concept, developed by Stanford University, makes it possible to develop a
small satellite and have it launched into space at low cost. The concept specifies among
other things, that the satellite must be a 10cm x 10cm x 10cm cube weighing no more
than 1 kilogram. This makes it possible to launch up to three CubeSats at a time,
from a standard deployment mechanism known as a P-POD (Poly Pico-satellite Orbital
Deployer). In this way considerations regarding launch and deployment from the rocket
used as launch vehicle, is indeed reduced for the CubeSat developers. Multiple P-PODs
can easily be stacked together and many CubeSats can be deployed in a launch. The
cost for launching P-PODs is shared between the CubeSats. The cost is also lowered by
launching the P-PODs as secondary payloads in launch vehicles. Secondary payloads
are added to launches where a primary payload does not use all the available space in
the launch vehicle.

The development of a CubeSat fits ideally to the project based education form used at
Aalborg University. This has resulted in a project being initiated which involves groups
of students from different departments of AAU.

2.1 Choice of Mission

The Department of control engineering at AAU has already had experience with de-
veloping satellites: the operating @rsted and the not yet finished Rgmer. These two
satellites fall into the category of micro-satellites. The CubeSat is a pico-satellite, and
will be much smaller. The size of a CubeSat gives the advantage of low launch cost,
but at the same time it constrains the design. It is a challenge to fit an on-board com-
puter, power supply, communications systems and hardware for attitude control into
the satellite. Depending on the mission of the satellite, there must also be room for a
payload. First of all the project will give the involved students experience with working
on a satellite project.

With this being the first, in a line of possibly more CubeSat projects at AAU, it is part
of the mission to bring some experience to AAU in the field of developing CubeSats.

15

CHAPTER 2. MISSION DESCRIPTION

Students working on future CubeSats at AAU may learn from the results of this project.
For this to be possible it is important to document all project work and receive health
data from the subsystems on the satellite, when it is launched.

In order to secure a high level of reliability in expensive satellites, it is common to use
components which have been well tested for use in space. However, this being a low cost
satellite, some experimentation is done in the choice of components. This is the case
with the payload. The satellite is going to take pictures of the earth from a low earth
orbit (LEO) at a height of approximately 600 km. For this a CMOS camera is going
to be used. It will take color pictures in the visible light spectrum. The pictures will
be transmitted to a ground station and made public via the Internet. People using the
Internet will have the possibility to request the satellite to take a photo of a geographic
location. The scope of photo coverage will be restricted to Denmark. The purpose of
this mission is to increase public interest in space science, technology and natural science
in general. The satellite can show that it is possible to monitor or take pictures of the
earth from LEO with a small pico-satellite like the CubeSat .

It has also been proposed that the satellite should perform a task with a more scientific
purpose. This proposal is observation of stars. By monitoring light intensity of stars, it
may be possible to discover unknown planets. The proposal for this mission came too
late in the satellite design phase, to consider performing a new mission. Monitoring the
stars efficiently would require on-board analysis of data from the camera. However, it
has been decided that it would be a good idea to take some pictures of stars, in order to
decide if the camera and lens together with the other subsystems in the AAU CubeSat
could perform this mission. This could provide a good basis for a later CubeSat designed
specifically to monitor the stars.

2.2 Launch and Orbit

The launch of the CubeSats is planned by Stanford University in collaboration with
the company One Stop Satellite Solution (OSSS). The launch of the first 18 CubeSats
is scheduled to be with a Dnepr-rocket from Baikonur Kosmodrom in Kazakhstan on
November 15th 2001. The launch placing the AAU CubeSat in orbit is at moment of
writing still being negotiated. The CubeSats being secondary loads, they must wait for
the primary load to be ready. For that reason a given launch date may be postponed to
wait for the primary load. For this reason a precise launch date or the orbit parameters
are not yet known. In Figure 2.1 a Matlab simulation of an orbit with respect to the
earth’s rotation is shown. Parameters for an orbit very similar to the one the first
CubeSats are launched into on November 15th 2001 are used in the simulation, in order
to have some idea of what to expect. The orbit is circular and has an inclination of
96°and an orbit height of 600 km. The simulation is made for 24 hours beginning 12.00
o’clock at the day November 15th year 2002. We expect the orbit for our own CubeSat
to be something similar to the simulated orbit.

16

Group 555 2.2. LAUNCH AND ORBIT

Orbit propagation (Position) in ECEF frame

z (km)

Figure 2.1: Matlab simulation showing how the orbit moves with respect to earth’s
rotation.

| Time | 15th November 2002 16th November 2002
Start 13.20.10 | 14.52.20 | 16.29.50 | 18.12.40 | 00.50.20 | 02.27.10 | 04.05.30
[hour.min.sec]

Stop 13.22.10 | 15.02.10 | 16.39.20 | 18.13.60 | 00.58.40 | 02.37.30 | 04.12.10
[hour.min.sec]

Time [sec] 120 sec | 590 sec | 570 sec | 80 sec | 500 sec | 620 sec | 400 sec
Total Communication over 24 hours: 48 min 0 sec

Table 2.1: Start and stop times for communication in the simulation shown in Figure 2.1.

December 20, 2001 17

CHAPTER 2. MISSION DESCRIPTION

2.2.1 Communication Between Satellite and Ground Station

The simulation in Figure 2.1 also shows how often it is possible to communicate with the
satellite, when a single ground station at Aalborg University in Denmark is used. The
black line showing the orbit, is shaded grey where it passes above 5°over the horizon seen
from the ground station. In these periods it will be possible to communicate with the
satellite. Every second orbit passing through the area of communication at Figure 2.1,
is passing at night time. It is important, when looking at the figure, to remember that
it is the earth that rotates approximately 360°per day within the circular orbit.

In Table 2.1 the times where the satellite enters and leaves the range of communication
is shown, together with the total time of communication. These times will vary for the
satellite depending on the date, but the overall communication time will pretty much
be the same for the simulated orbit. With a total of approximately 48 minutes to do all
communication including transferring the satellite photo to ground station, this will set
a limit to the amount of photos taken per day.

18

Chapter 3

Mission Analysis

This chapter describes the mission analysis. First the mission analysis describes the
mission statement for the satellite. After this the requirements and constraints for the
system and for the development of the system are described. The design is described in
sections 3.3 and 3.4 and general considerations on hardware implementation in section
3.5.

3.1 Mission Statement

The mission statement is made from the mission description in Chapter 2. The primary
purpose and mission with the AAU CubeSat project, is concerning the educational
aspect. It is important that the project work fulfills the requirements to project work
at AAU. The secondary missions concerns the functionality of the satellite.

Primary mission:
To show that students at AAU are able to design and build a satellite. Hereby also gain
experience in designing satellites and pico-satellites in particular.

Secondary mission:

e To communicate with the satellite while it is in orbit, in order to receive house
keeping for the on-board subsystems. Hereby gaining knowledge on how well each
subsystem works.

e To take satellite photos of the earth and transmit them to a ground station. Hereby
testing the attitude control and CMOS camera i LEO.

e To let people via the Internet choose a geographic site to be photographed and
then later retrieve the photo from the Internet. Hereby increasing public interest
in space science, technology and natural science in general.

19

CHAPTER 3. MISSION ANALYSIS

e To see if the CubeSat with its configuration of hardware and especially the camera
will be able to monitor the stars, in order to find unknown planets. A future
CubeSat project considering such a mission could benefit from this knowledge.

3.2 System Requirements and Constraints

In this section requirements and constraints for the system are described. The system
requirements must live up to the mission objectives, while the constraints limit the
design. The functional requirements define how well the system must perform and the
operational requirements determine how the system operates and how users interact with
it. Using the CubeSat concept affects both the operational requirements and constraints.

3.3 System Design

Important factors taken into consideration when developing the design for the satellite,
listed in random order:

e Keep the design simple, in order not to complicate and increase risk of errors in
the system.

e Avoid unnecessary moving parts in design.
e The mission statement described in Section 3.1 must be taken into account.

e There is limited space and total weight must be kept under one kilogram, so this
limits the amount of hardware.

e The System must be divided into subsystems with well defined interfaces in order
for work to be distributed between project groups.

To carry out the mission chosen for the AAU CubeSat, the direction in which the camera,
the antennas and the solar panels are pointed must be controllable. Two design concepts
can be considered:

1. Use servo motors to make precise control of pointing direction for camera inside
satellite. A simple attitude control is needed to stay in the working area for servo
motors. Direction of antennas and solar panels can be controlled with simple
attitude control.

2. Antennas, solar panels and camera are fixed inside satellite, and pointed towards
their target with precise attitude control.

Design option 2 is preferred over design option 1. In order to keep the design simple and
avoid moving parts, the camera, antennas and solar panels will be fixed to the body of
the satellite and pointed towards their target using attitude control for the satellite.

20

Group 555

3.3. SYSTEM DESIGN

Functional requirements

Performance

Take satellite photo of a 100 x 100 km location in Denmark. When the
satellite is right above location, the photo should be no more than 100 km
off target. To increase public interest in the photos, they should be high
resolution and in colors.

Coverage

The desired daily coverage is one satellite photo of a location in Denmark.
However, the coverage or photo quality may be lowered by weather condi-
tions and if the satellite orbit some days does not pass close enough over
Denmark.

Responsiveness

Communication is also limited by the amount of times the satellite passes
over Denmark. When a photo is acquired in the satellite it should be send
back to ground station within a day.

Operational requirements

Duration The satellite will take pictures for as long as it is functional

Availability The satellite is at best within range of communication 10-15 min when
passing above horizon seen from the ground station. Every twelve hours it
is within communication for short periods approximately 3-4 times. Total
communication per day is around 50 minutes.

Survivability In order to have a reasonable time scope to collect data and experiment

with the satellite after launch, the goal is to secure its lifetime in LEO
environment to at least a year. This means that it should be able to acquire
at least 365 satellite photos in its lifetime.

Data distribu-
tion

One ground station located at Aalborg University is used to communicate
with the satellite.

Data content,
form and for-

The photographic material should be compressed and possibly split up into
packages before it is send to the ground station. The coordinate for the

mat geographic site is sent together with the compressed photo data. The photo

material is then published on a web page.
‘ Constraints

Cost Launch: 50000 US Dollars, Satellite: Concept is to design a low cost satel-
lite.

Schedule 1/9-01 Project start, 7/11-01 Preliminary design review, 12/12-01 Criti-
cal design review, 15/4-02 Preshipment readiness review, 1/5-02 Delivery
of flight model to OSSS, 2/9-02 Shipping from OSSS to Russia, 1/10-02
Launch vehicle integration start, 15/11-02 Launch.

Political The AAU CubeSat project must fulfill the requirements given for project
works at AAU.

Environment | Launch vehicle places satellite into LEO

Interfaces Operator interface at ground station is to be determined. User interface is a
web-site, where a request can be made for a satellite photo of a geographic
site in Denmark.

Development | Design must meet the design requirements set forth in the P-POD Payload

Planner’s Guide.

Table 3.1: Requirements and constraints as suggested by [3, page 15]

December 20, 2001

21

CHAPTER 3. MISSION ANALYSIS

3.4 Subsystems

The CubeSat project is divided into the following work packages: The system, the plat-
form and the payload. The System comprises the overall system structure, interfaces on
the subsystem level and interfaces with the P-POD. The platform work package contains
ground station with control center, spacecraft structure, power supply unit (PSU), com-
mand and data handling subsystem (CDHS), communication subsystem (CSS), attitude
determination and control subsystem (ADCS). The payload work package comprises of
selecting and assembling hardware and determining an interface in order to use the
camera. The system work package is developed in close cooperation between the groups
involved in the CubeSat project. This results in well defined subsystems and interfaces
between the subsystems.

ﬁ Turn subsystems On/Off —= Sat Coordinates*
— Pic_Coordinates
V SunPanel_Status

Battery_Status <— Datalog
Info_System On/Off <=— Position
Error/Alarm =— Status
Thermal data PSU <— Error/Alarm
* Coordinates are updated
\ approx twice aweek
Control |4 ~ Ground |4 =~ com = > DHCS |< =~ ADCS
Center Station
PayLoad\
—= Position (NORAD) =— Send/Receive Take Pic
— TimeSync <— Stat/Stop Com (Turn ON/Of)
—= Housekeep_Req <— Create/Close Channel
— FcReq) Picture
—= Status Error/Alarm
~<— Datalog (housekeep) —= Error/Alam Status
=— Status
—<— Advanced Beacon
=— Errorlog

! Every subcomponent returns status when GetStatus is received from DHCS

Figure 3.1: Communication between subsystems

3.4.1 Control and Data Handling Subsystem (CDHS)

The CDHS controls the overall functionality of the satellite and takes care of house-
keeping in the system. This includes logging of data from subsystems, logging of errors,
status of the system, error handling, sends and receives data form the ground and han-
dles the photography.

22

Group 555 3.4. SUBSYSTEMS

3.4.2 Attitude Determination and Control Subsystem (ADCS)

This subsystem is needed to control the attitude of the CubeSat during flight. The ADCS
is designed and implemented as a fault tolerant control system. With this method the
ADCS detects and locates errors in sensors and actuators. It then determines a proper
solution to the fault and reconfigures the ADCS to accommodate the fault. Both fault
detection, decision on how to accommodate the fault and the reconfiguration is handled
within the ADCS.

The ADCS must be able to switch to the attitude control modes, listed in Table 3.4.2.
From the CDHS the ADCS receives commands specifying which control mode to use

‘ Attitude control modes ‘

Detumbling Used in initialization to stop satellite from spinning

Fail safe Used in initialization before going to mission mode. It is a very simple
attitude control that secures communication between ground station and
satellite.

Power save Simple control to minimize energy consumption and maximize energy

input on solar panels. There is a Power save mode for both daylight and
eclipse.

Camera con- || Attitude control used in mission mode for taking satellite photos. The
trol required precision is decided to be 10°which on ground gives a 100 km
error off target. Together with the command to switch to camera control,
parameters for the site to be photographed is needed.

Communication| Used in mission mode to improve communication between ground station
control and satellite.

and eventually a coordinate for a geographic site to be photographed. If a fault has been
detected in the ADCS this is reported to the CDHS together with information about
any resulting reconfigurations. Runtime status for the ADCS is also send to the CDHS.

3.4.3 Power Supply Unit (PSU)

The PSU provides, stores, distributes and controls electrical power in the satellite. The
power is provided from solar panels mounted on the outside of the CubeSat and it is
stored on batteries. Power is distributed to each of the other subsystems through a

power-bus. Runtime status for batteries, solar panels and power to the subsystems is
send from the PSU to the CDHS.

3.4.4 Communication Subsystem (CSS)
This subsystem makes it possible to receive tele-commands from ground station and

send back telemetry. Tele-commands include and send the photo material to ground.
Figure 3.2 shows the tele-commands and telemetry.

December 20, 2001 23

CHAPTER 3. MISSION ANALYSIS

Communication in function layer:

User Control room + ground station Satellite Initialization Mission
Coordinate on orbit Anal hoto 1ob
Coordinate . Coordinate to photograph e nalyze photo jol No Yes
Starting point for camera control ~ Estimated power
Forced power save
Satellite photo < Decompressed photo material — Compressed photo
publicated on Internet P P P P No Yes
NORAD lines (position update)
Current time — > Do they seem OK? Yes Yes
SW upgrade
Settings
_— Status Yes Yes
Satellite data to be analyzed Datalogs No Yes

Figure 3.2: This figure shows tele-commands from ground station and telemetry from
satellite.

3.4.5 Payload (camera)

The camera is used to acquire the photo material, on a command from the CDHS. The
data is stored and ready for being compressed.

3.4.6 Ground Station

The ground station is equipped with the necessary hardware to send tele-commands to
the satellite and receive telemetry. The ground station is connected to a control center.
The control center is connected to a public web-page on the Internet. From this web-
page a request can be made for a satellite photo centered around a location in Denmark.
The control center automatically handles requests from the web-page and sends them to
the satellite. When a satellite photo is send to ground it is also automatically published
on the web-page. In of case anomalies in the satellite, an operator at the control center
must be notified.

3.4.7 Spacecraft Structure
The structural design of the CubeSat, must comply to the design requirements set

forth in the P-POD Payload Planner’s Guide. Weight distribution and shielding from
radiation are some of the criteria to be considered.

3.5 Implementation of System

All subsystems in the satellite are implemented in their own hardware block, as can be
seen in Figure 3.3(a). The subsystems in the satellite are communicating over a data-
bus, and receive electrical power through a power bus from the PSU. The communication
between ground station, control center and user is shown in Figure 3.3(b).

24

Group 555

3.5. IMPLEMENTATION OF SYSTEM

On-board computer

DHS

PDU

—‘ Solar panels|
—‘ Batteries

= Power bus

> Data bus

ADCS

4‘ Sensors
4‘ Actuators

COMM

—‘ Receiver
—‘ Transmitter

Payload

Camera

(a) Block diagram describ-
ing the implementation of
subsystems in the satellite

]

Internet

-

Co

A
>

ntrol room + ground station

Satellite

(b) Block diagram showing hardware on

ground

Figure 3.3: The two figures show the complete system divided into satellite and ground

hardware.

December 20, 2001

25

Chapter 4

Summary

The mission analysis has described the overall considerations for the AAU CubeSat
project. The first topic considered was the motivation for developing a satellite at
Aalborg University. Since the AAU CubeSat project is a student project, the main goal
is to show that student groups at AAU can work together in designing an building a pico
satellite. Furthermore it was chosen to fit a small payload into the satellite to carry out
a task. Since the CubeSat concept puts very tight constraints on the size and weight of
the satellite, the payload for the satellite was chosen to be a small CMOS camera, that
will take pictures of Denmark. After the constraints and requirements from the chosen
mission and the CubeSat concept in general was analyzed and described, the satellite
was split into several subsystems. The rest of this report deals with the communication
subsystem, and in particular the software to used in this subsystem.

26

Part 11

Analysis

SIS F— A |}

Aalborg University

This part covers the analysis of the communication subsystem, in particular the software
in this subsystem. First the hardware is briefly analyzed, followed by a requirement
specification for the software. This is followed by more specific requirements, that in
detail describes how the defined software should work. Rounding of this part of several
application examples will be presented to illustrate how the software is meant to be used

27

Chapter 5

Communication Subsystem

The communication subsystem (CSS) in the AAU CubeSat project can be considered as
two distinct systems, namely the system on the satellite and the system on the ground.
This chapter will mainly describe the system on-board the satellite, but some aspects
of the ground system will also be covered. The CSS in the AAU CubeSat consist of
hardware purchased from One Stop Satellite Solution (OSSS) and the protocol being
developed. Section 5.1 will describe the hardware used and the constraints it will put
on the system as a whole. The protocol used will be described in Chapters 6 and 7.

5.1 Satellite Hardware

As mentioned, the communication hardware in the AAU CubeSat is purchased from
OSSS. They deliver a fully developed and tested solution, consisting of electronic hard-
ware and antenna for the satellite and a modem for the ground station. The remaining
hardware for the ground station: Antenna, transmitter and receiver, will have to be
purchased separately. A simple sketch of the communication system can be seen in
Figure 5.1. The figure shows the different hardware parts in the system and how they
interact. All software used for normal communication will be executed on the main
CPU on the satellite. In the event that the on-board computer malfunctions or never
becomes operational after launch an emergency system should be implemented. This
system, also shown in Figure 5.1, will consist of a small micro controller, most likely a
PIC, to transmit a simple emergency beacon. When the PIC is powered up it will send
out emergency beacons, until the on-board computer signals it to stop over the I12C bus.
When not sending out beacons the PIC expects a signal from the on-board computer
every minute or else it will start sending out beacons again.

5.1.1 Antenna

The antenna delivered by OSSS is a center loaded dipole antenna with the length tuned
to the frequency of the transceiver. The antenna whips are made from spring wire and

29

CHAPTER 5. COMMUNICATION SUBSYSTEM

Satellite
Rx Rx
"B B]
Onboard —P> Modem Transceiver Antenna
Computer
- EEEE—
TX TX
A
A 1C Bus }
y |
Parallel |
Emergency BUS !
beacon .
PIC Radio &}Naves
|
,, i,,,,,,,,,,,,,,,,
Ground Station !
,,, v
Rx Rx
RS232
PC —P> Modem Transceiver Antenna
T’ T>
X

Figure 5.1: Sketch of the communication subsystem

mounted on a delrin ring which is mounted on the outside of the CubeSat. The whips
are stowed in grooves in the antenna ring before the CubeSat is deployed into space.
The whips are held in the ring by a light string, which is sprung by a heat element
controlled by the on-board computer.

5.1.2 Transceiver

The transceiver includes all hardware, filters, amplifiers etc., used to receive and transmit
radio signals through the antenna. The hardware operates in half duplex mode, meaning
that the transceiver cannot receive and transmit at the same time. The transceivers
frequency is programmable in the range from 425MHz to 485MHz. Furthermore the
transceiver is only guaranteed to operate with a bit-rate up to 19200 bps.

5.1.3 Modem

A MX909A GMSK (Gaussian minimum shift keying) modem chip made by MX-COM
Inc. is used. The MX909A contains all of the baseband signal processing and Medium
Access Control (MAC) protocol functions required for high performance wireless packet
data communication. The modem is connected, as shown in Figure 5.2, to the main
CPU on the satellite using a byte wide parallel bus. The chip is designed with the
Mobitex communication system and packet data format in mind, but a custom system is
easily implemented. Furthermore it supports the use of (required by Mobitex) Forward
Error Correction code (FEC), but this comes at the cost off four extra bits per byte
transmitted. Since the link budget (see appendix A) for the AAU CubeSat shows a

30

Group 555 5.2. GROUND STATION HARDWARE

very low probability of error, the FEC will not be used. Like the transceiver the modem
supports a maximum bit-rate of 19200 bps. The bit-rate is set using two capacitors, this
means that it can not be changed on the fly. The hardware supplied by OSSS have the
bit-rate set to 9600.

DO:7 ﬁ DO:7
DataBus

AO:1 ﬁ AO:1
Address Bus

A2:7 ﬁ Address Decode — A2:7

CPU MODEM

IRQ | IRQ

WR > WR

RD > RD

Figure 5.2: CPU<->Modem interconnection.

5.2 Ground Station Hardware

As mentioned earlier the only hardware OSSS provides for the the ground station is a
modem, so the remaining hardware will be bought separately. Since the AAU CubeSat
orbits the earth in a LEO (Low Earth Orbit) approximately 600 km above ground and
the transmitter on the satellite transmits with two watts in the s-band, a simple yagi
antenna on a rotor should be sufficient for the ground station. The transceiver used
will be chosen from at large variety of amateur radio equipment available. The actual
decision of antenna and transceiver is not within the scope of this report and will not
be considered further.

December 20, 2001 31

Chapter 6

Requirement Specification

This chapter will describe the requirements to the communication protocol. Different
topics and sources have to be considered for the requirements e.g. requirements from the
AAU CubeSat mission, the hardware used and requests from the other groups working
on the AAU CubeSat project.

6.1 System Description

The system being developed is a protocol to handle communication between the CubeSat
and the ground station. The protocol have to fulfill the following requirements:

e Provide a flawless link for communication.
e Compatible with the call names used in the radio amateur community.

e Possibility to pause and resume the communication, when exiting and entering
sight of communication.

e Possibility to prioritize between different types of data.
e Support multiple “channels” - similar to the port concept in TCP.

e Operate on a half duplex link, which yields the following requirements to the
protocol:

— Supported in MAC (Media Access Control) layer.

— Prioritizing between satellite and ground station.

e Possibility to transmit a beacon.

32

Group 555 6.2. FUNCTIONALITY

6.2 Functionality

An already existing data-link protocol, AX.25, has been found and is suitable as a basis
for the new protocol. A detailed description of the AX.25 protocol is found in Appendix
B. The AX.25 protocol has been chosen for the following reasons:

It handles error detection and retransmission of corrupt data.

It supports call names.

It supports half duplex.

It is widely used in the radio amateur community.

It is well documented.

As seen in Appendix B AX.25 supports both connection-oriented and connection-less
transmissions. The new protocol will use the connection-oriented part of AX.25 except
for transmission of the satellite beacon.

The main drawback with AX.25 is its lack of support for priorities. Furthermore its
capabilities to pause and resume communication are not sufficient. When the AX.25
looses its connection all data waiting in its transmit buffer are flushed, this means
that transmission of a data block over several passes is not supported by AX.25. An
appropriate solution to these problems will have to be developed.

Following the OSI model, described in Appendix D, the AX.25 is the data-link layer
(second layer), prioritizing and pause/resume functions will have to be handled in higher
layers. According to the OSI model the desired functionality requires both a transport
and session layer. In this project it have been chosen not design two independent
layers, but to incorporated all the functionality into one layer called the T55X layer.
The overhead in design and implementing two independent layers was deemed to large.
Furthermore the protocol being developed the functionalities required from the OSI
session and transport layer are easily combined in one layer.

A complete block diagram of the protocol stack is sketched in Figure 6.1.

For the applications using the protocol it will seem as a transparent link to the ground
station, with the ability to send different types of data with different priorities.

Not all layers from the OSI model are necessary, e.g. a network layer is not needed since
the protocol will only be used between the ground station and the satellite.

6.2.1 T55X Layer Functionality

The T55X layer will include functionality to handle prioritizing and pausing/resuming
communication. Furthermore multiple channels will be available to a higher layer, these

December 20, 2001 33

CHAPTER 6. REQUIREMENT SPECIFICATION

OSl Layers Ground Station Satellite
Presentation
Session

T55X T55X
Transport
Network

Figure 6.1: Layer structure of the protocol

are used to transmit different types of data. An overview of the main parts of the T55X
layer can be seen in Figure 6.2.

To solve the problem with pausing and resuming communication, the T55X layer have to
segment large data blocks into smaller packages to pass to the data-link layer (AX.25).
If a package is lost in the data-link layer when connection is lost, it will be retransmitted
by the T55X layer when the connection is reestablished. The segmenting is done indi-
vidually on the different channels. Data segments received on a channel will be stored
until the complete data block have been received, only then will data be send to a higher
layer.

The T55X Transport Controller (TTC) shown in Figure 6.2 have several different tasks.
Its main function is to prioritize between the different channels and always transmit
the most important data. Since only half duplex communication hardware is available
it needs to prioritize between the satellite and ground station. This function is also

Channels
T55X
Transport
Controller

De- Multiplexer

Figure 6.2: Overview of the T55X layer.

34

Group 555 6.2. FUNCTIONALITY

included in the TTC. Finally the establishment of a communication connection will also
involve the TTC. When a higher layer request a connection, the TTC will handle all
communication with the AX.25 required to establish the appropriate connection.

The last part of T55X is the De-multiplexer shown in Figure 6.2. This block is closely
tied with the segmenting done in the channels when data are transmitted. When a data
block is received from AX.25 the de-multiplexer sends the block to the correct channel
or to the TTC if the data block received is internal control data.

In Figure 6.3 a s MSC (Message Sequence Chart) illustrates a simple usage of the
protocol. The assumptions for this MSC are:

e Communication has been established.
e Channel 1 has the highest priority and its data is send in one packet.

e Channel 2 has the lowest priority and its data is send in two packages.

Application Channel 2 Channel 1 TTC De-Multplerer Channdl 1 Channel 2 | | Application
Data-A
| Packet- Al
| Packet- A1~
| Packet- A1
Data-B
| Pagket- A2
Packet- B1
Packet- B1
| Packet: Bl)
Data-B
| Packet- A2~
| Pagket- A2
_D.H&A%.

Figure 6.3: MSC of the T55X layer.

Figure 6.3 shows how the channels segment the data into packages and are allowed
to send them, by the TTC if they have the highest priority. It also shows that the
application is not informed about any packages before all packages have been received.

December 20, 2001 35

Chapter 7

Specific Requirements

In this chapter the topics: Definitions and functionality, are covered in order to achieve
the specific requirements for the communication subsystem interface to the overlying
applications. All the specific requirements are derived from a meeting with the groups
responsible for the subsystem utilizing the protocol.

7.1 Definitions

The purpose of this section is to define the data structures involved in the interface to
the overlying applications.

7.1.1 Data

The data sent between the protocol and the interfacing subsystem is represented as
a pointer and a length of the data in bytes. The size of the length parameter is set
to 32 bits, for connection oriented data, which allows for data sizes up to 4 GB. The
alternative would be 16 bits which only allows for 64 KB, and the size of the largest
data to be sent (images) is at least 100 KB.

For connection-less data the maximum length is 256 bytes, hence beacons has to be
within this limit.

7.1.2 T55X Channel ID

This data structure identifies a virtual channel in the transport layer of the protocol
stack. The requirement from the subsystems using the protocol is that 5-7 channels
should be available. To accommodate for future extensions the range of the ID is set to
0-15, which allows for 16 unique channels.

36

Group 555 7.1. DEFINITIONS

7.1.3 T55X Channel Priority

In order to prioritize the data sent on the space link several options are available:

1. Use the ID as the priority as well, so that each channel has a unique priority, where
the lowest ID has the highest priority.

2. Divide the channels into priority groups so that for instance channels 4 to 7 has
the same priority and channels 8 to 11 have the same priority.

3. Keep the ID and priority independent of each other, so that the ID says nothing
about the priority. Prioritizing would require that every data sent on the channel
should have a priority of its own.

From these possibilities the first one, is chosen, because it is sufficient for the interfacing
sub systems. This means that there will be no explicit data structure to identify the
priority, it will appear from the ID.

7.1.4 Transmit Buffer

Each channel has a buffer to hold the data sets (pointers and lengths) to be send on it.
The buffer is a dynamic list (per channel) that expands as more data sets are send. To
prevent this list to expand indefinitely (beyond memory limits), a function that returns
the size of this buffer will be implemented. This can then be used to regulate the buffer
size from application level.

The actual data will be stored at the given pointer, with the length indicating its size.
When the buffer is sent the memory block is freed, and will return to the memory heap
for use by other applications.

7.1.5 Call-back Functions

To notify the applications of sporadic events, such as when a complete data block has
been received in a channel or when errors occur, a call-back function is invoked to notify
the application about it. The name of the call-back functions are not specified in the
protocol, only the structures of them are, and it is the responsibility of the application
to set up appropriate call-back functions that conform to the structure, and handles the
events.

There are two different types of call-backs:

1. Channel call-back.
To handle channel events like data received.

2. General call-back.
Handles system events like disconnect.

December 20, 2001 37

CHAPTER 7. SPECIFIC REQUIREMENTS

General Call-back

There is only one instance of this call-back function and it is used to notify the applica-
tion of events related to the entire communication protocol, and to receive connection-
less data (beacon).

The structure of this call-back function is:
void (*func) (char type,char* startPointer,int length)

The different values of the type parameter are:

e DATA_RECEIVED - A complete connection-less data block (beacon) has been re-
ceived and its location is stored in the pointer and length parameter.

e CONNECTED - The communication system is connected to the other part (satellite
/ ground station)

e DISCONNECTED - This event is triggered either if the link is broken (out of reach)
or the other part explicitly disconnected.

e QUT_OF_MEMORY - If one of the channels fails to allocate memory in its receive
buffer this event is triggered.

An example of this type of call-back function is:

void handleEvents(char type,char* startPointer,int length)

Channel Call-back

This call-back is unique for each channel and it is called whenever a complete data block
has been received at the channel. The structure of this call-back is:

void (*func) (char* startPointer,int length)

The call-back function must be a void function with the received data (pointer and
length) as the parameters.

An example of this type of call-back function is:

void receivelImage(char* startPointer,int length)

7.2 Functions

This section describes the specific functions in the communication sub system available
to the overlying applications. The functions are divided into three categories: System
functions, general functions and functions related to a channel.

38

Group 555 7.2. FUNCTIONS

7.2.1 System Functions

Initialize Communication

e Input: General call-back.

e Function: Closes all open channels and sets up the communication with the
specified general call-back function. It is up to the applications to inform the
other part (satellite / ground station) that this function has been called.

e Output: -

e Syntax:

void initCommunication((*func) (char type, char* startPointer,
int length));

7.2.2 General Functions
Connect

e Input: -

e Function: Sends a connect request to the data-link protocol and will wait for a
response and return the result.

e Output: The function returns a value that indicates the result of connection
request:

— CONNECTION_OK: Connection established.
— CONNECTION_FAILED: Connection failed, due to time-out.

e Syntax:

char connect();

Disconnect

e Input: -

e Function: Closes all open channels and sends a disconnect request to the data-
link protocol.

e Output: -

e Syntax:

void disconnect();

December 20, 2001 39

CHAPTER 7. SPECIFIC REQUIREMENTS

Pause
e Input: -

e Function: Will disconnect at data-link level, but will keep the data to be send
and received.

e Output: -

e Syntax:

void pause();

Resume
e Input: -
e Function: Connects the data-link level protocol after a pause.
e Output: -

e Syntax:

void resume();

Send Connection-less Data
e Input: Start and length.

e Function: Sends the data, specified in the start and length parameter, connection-
less.

e Output:

— DATA_SEND: Data successfully scheduled for transfer.

— DATA_NOT_SEND: Data scheduling failed, e.g. length>256.

e Syntax:

char sendConLess(char* start, int length);

40

Group 555 7.2. FUNCTIONS

Get Status
e Input: -
e Function: It will read the status of the communication system and return it.
e Output: Can return the following values:

— COM_RUNNING: Communication is established and running.
— COM_PAUSED: Communication is established but is currently paused.

— COM_STOPPED: Communication is not established and is not running.

e Syntax:

char getStatus();

7.2.3 Channel Functions

The functions related to a channel are:

Open Channel

e Input: ID, channel call-back and number of elements in the transmit buffer.

e Function: Creates a new channel with the specified ID, transmit buffer and
call-back function.

e Output: The function returns a value that indicates the result of it:

— CHANNEL_OPENED: Channel opened successfully.
— CHANNEL_ALREADY_OPENED: Channel is already open.

— CHANNEL_NOT_QOPENED: Channel could not be opened, e.g due to lag of mem-
ory.

e Syntax:

char openChannel(char id,void (*func)(char* data,int length) callBack);

Close Channel
e Input: ID.

e Function: Removes the channel with the specified ID, and cleans up the channels
memory usage.

December 20, 2001 41

CHAPTER 7. SPECIFIC REQUIREMENTS

e Output: -.

e Syntax:

void closeChannel(char id);

Send Data

Input: ID, start and length.

Function: Puts the start and length of the data at the next element of the
transmit buffer. The data will then be send when scheduled to by the TCC in the
T55X transport layer. If there is no memory left for another element in the list,
an error is produced.

Output:

— DATA_SEND: Data successfully scheduled for transfer.
— DATA_NOT_SEND: Data scheduling failed, e.g. no memory for buffer.

Syntax:

char sendData(char id, char* start, int length);

Data Left to be Send

e Input: ID.

e Function: Subtracts the length of data being sent from the data that has already

been sent.

e Output: Returns the amount of bytes that have not yet been transmitted.

e Syntax:

int leftToTransmit(char id);

Elements in Transmit Buffer

42

Input: ID.

Function: The function will return the number of elements in the transmit buffer
of the channel with the specified ID.

Output: Elements in transmit buffer.

Syntax:

int transBufferElements(char id);

Group 555 7.2. FUNCTIONS

Flush Transmit Buffer

e Input: ID.
e Function: Clears all elements in the transmit buffer.
e Output: -

e Syntax:

void flushTransmitBuffer(char id);

Flush first element in Transmit Buffer

e Input: ID.
e Function: Clears the element currently being transmitted.
e Output: -

e Syntax:

void flushCurrentTransmit(char id);

Data in Receive Buffer

Input: ID.

e Function: Returns the amount of bytes in the receive buffer.

Output: Amount of data in the receive buffer.

Syntax:

int dataInReceiveBuffer(char id);

December 20, 2001 43

Chapter 8

Application Examples

This section describes how the previously described functions could be applied to achieve
the overall functions of the communication system.

8.1 Start Communication

This function is only used when the satellite does not know its orientation and needs to
ping the ground station. To start the communication the following pseudo code could
be used:

Satellite:

function beaconMode(){
while(getStatus != CONNECTED)<{
sendConLess(data); //Send out beacon with e.g. housekeeping data
sleep(RTT+T); //sleep Round Trip Time + computation time

Ground station:

//Initialize the general callback function.
initCommunication(handleEvent) ;

//The general callback function
function handleEvent(type,ptr,length){
if (type == DATA_RECEIVED) then {
store(ptr,length);
connect(); //Blocking function call
}
}

44

Group 555 8.2. SEND / RECEIVE DATA

The pseudo code is illustrated with a MSC in Figure 8.1. The initiating side is the
satellite which sends out a beacon. When a beacon gets through to the ground station
it answers the beacon with a connect request. This connect request blocks until a
connection has been established or it times out. If a connection has been established
the loop on the satellite breaks and a connection has been established.

Ground Ground Satellite Satellite
applications protocol protocol applications
getStatus
sendConLess
Lostin w
getStatus
sendConLess

-

handleEvent

connect

—

handleEvent
getStatus

Figure 8.1: A MSC showing how the satellite connects.

If the transmission is to be paused, the pause() function should be used. This will
halt the transmission, until the connection is reestablished by the resume() function.
To reset all transmissions the disconnect() function must be used. After calling a
disconnect () it is necessary to call the connect () function again.

8.2 Send / Receive Data

This is an example on how to send and receive data between the ground station and the
satellite.

Ground station:

openChannel (3,callbackFunction) ;
sendData(3,data); //sends data to sendbuffer
sendData(3,data2); //sends data to sendbuffer
}

December 20, 2001 45

CHAPTER 8. APPLICATION EXAMPLES

Satellite:

openChannel(3,receiveData);

function receiveData(start,length){
store(ptr,length) //Save the incomming data
}

On both the ground station and the satellite, channels with the same ID and priority
are opened. In this example the call-back function on the ground station is not de-
fined because it will not receive any data. On the satellite a call-back is registered as
receiveData where the data will be received. When the complete amount of data in
data is received at the satellite the call-back function is called and the application can
store the data. The same thing happens when data2 is received at the satellite.

8.3 Time Synchronization

The normal approach to time synchronization is a hardware solution that requires the
possibility to time stamp a package when the first bit is transmitted. On the AAU
CubeSat this solution is not possible, so a software approach will be used instead. This
solution is described in the following.

8.3.1 Synchronization Description

To synchronize the timers on both the satellite and the ground station, a method to
compensate for slow link must be used. This method will try to compensate by measur-
ing the round trip time for the packages, and does therefore also require that the round
trip times to be as uniform as possible.

The algorithm (also illustrated in Figure 8.2) would follow this sequence:
1. Ground Station sends its current time (T0).
2. Satellite updates its clock with the received time (TO0).
3. Satellite returns the same time (T0) back to the ground station.

4. Ground station gets its current time (T1) and subtracts the received time (TO).
This would be the round trip time (rtt), and the transmission time (dT) would be
half this value.

5. Ground station sends current time added with the transmission time (T1+dT).

6. Satellite subtracts the received time (T1+dT) with its current time (T0). Satellite
now knows round trip time (rtt), as well as current time (T14+dT) and updates
its clock accordingly.

46

Group 555

8.3. TIME SYNCHRONIZATION

7. Satellite returns its current time (T1) added with the round trip time (rtt).

8.

Ground station verifies that the received value matches it current time (T1+rtt
= T2), if not it continues from point 4, otherwise it sends an OK message to the
satellite, indicating end of transmission.

A reasonable tolerance in error should be used here, since variance in trip times will
affect the accuracy of this synchronization method.

Time

Satelite

To

T1+dT

T2+dT

Ground station

[T1+dT]

[T21+rtt]

N

dT

Figure 8.2: Time synchronization message exchanging

December 20, 2001

To

rtt

T1

T2=T1+rtt

47

Chapter 9

Summary

This part have outlined the major considerations behind the communication protocol
for the AAU CubeSat.

First the hardware in the communication subsystem on the satellite was described, which
yields this first basic requirements for the protocol. This being the ability to work with
half duplex radio hardware.

Next a requirement specification was made, based on the input from other CubeSat
project groups at the university. The main functionality of the protocol was chosen
and the protocol stack described. An already existing data-link protocol, AX.25, was
chosen as base for the new protocol. AX.25 was chosen because it provides the basic
functionality required for the AAU CubeSat, furthermore it is well documented and
widely used by the radio community and several other CubeSat projects around the
world. With AX.25 as a base an extra layer, T55X, was needed to fulfill the requirements
set by the AAU CubeSat project.

After the general outline of the T55X layer, more specific requirements for the layer
was chosen based on the input from the other projects groups that will interface with
the protocol. All functions chosen and made available to overlying applications was
described in detail.

This part was rounded of with application examples to show how the protocol should
be used.

During all these tasks the main objective was to define the interface to the other sub-
system, since this was the biggest problem at the beginning of the project.

48

Part 111

Design

SIS F— A |}

Aalborg University

This part covers the design of the T55X layer. The T55X layer will be modeled in
SDL using ObjectGEODE. First the internal and external signals in the model are
described, next the main functionality will be described. After the model is completed,
test specification for simulation, verification and validation will be presented. This part
ends with the actual result of the simulation, verification and validation.

49

Chapter 10

TH5X layer

This chapter describes the design of the T55X layer. The layer will be developed with
the requirements from the analysis part in mind, but not the constraints given by the on-
board computer and operating system on the satellite, as these considerations belongs
to the implementation part. This chapter gives an overview of the T55X, followed by
descriptions of the functionalities in the T55X layer and the different state machines.
As mentioned previously it has been chosen to use the SDL language to describe the
T55X layer and ObjectGEODE to model and verify the design.

10.1 Overview of T55X Layer

This section provides an overview of the T55X layer as it is derived from Chapter 7,
which defines the different tasks and interfaces of the T55X layer. Figure 10.1 shows
the SDL model of the layer. This model includes the different state machines described
in section 6.2, as well as the signal flow in the layer.

10.1.1 T55X Signals

Several signals are present in the T55X layer. Some of these are used for internal
communication in the T55X layer, while others are used to interface with the application
layer and the data-link layer. An overview of these signals can be seen in Figure 10.1

Application Layer Signals

The functions defined in section 6.2 are used as signals between the application layer
and the T55X layer with a few simplifications. The simplifications are due to the fact
that this is a design with verification in mind. Application functions whose only purpose
is to pass status informations are left out. Also functions which can be composed of
other functions will be left out. Furthermore the transmit buffer is reduced to a size of

51

CHAPTER 10. T55X LAYER

one, which removes some of the flush functions. Finally the resume connection function
has been removed as it turned out to do the exact same as the connect function.

The functions omitted from the design are therefore:

o Left To Transmit

Data in Receive Buffer

Resume connection

The remaining signals are shown in Figure 10.1 and will be explained. One of the main
differences between SDL signals and function calls, is that signals return no value.

e init - This signal is used to initialize the communication system on one side.

e sig receiveEvent - This signal indicates an event to the application. The signal
is sent with a parameter indicating which event occurred. The structure of this
signal can be seen in Table 10.1. The beacon received is considered to be an event

Elements in Transmit Buffer

Flush Entire Transmit Buffer

Flush the First Element in Transmit Buffer

with the data put in the connection-less data field.

Length:

8 bit

0 bit to 256 bytes

Carries:

Event type

Connection-less data

Table 10.1: Structure of a sig_receiveEvent signal.

The event type can have the following values:

— Running - To indicate that the connection is established and that this side
has the token, meaning that this side is allowed to send data, while the other

side is not.

— Waiting - To indicate that connection is established and the other side has

the token.

— IncommingData - Which will be accompanied with connection-less data.

e connectTo - This signal is used to establish a connection between the two T55X

layers.

52

Disconnected - Indicating that the two sides are currently disconnected.

10.1. OVERVIEW OF T55X LAYER

Group 555

MUl Ggxe D11

asned
‘SS9TUODPUSS‘198UU0ISIP
‘0]108UU02'sne1S18bul

YUl o1l dde

_”Ew>m_w>_womzlm_m”_

ssa%0id D11

\ 4

[1o0rd L BIS]

mmw._coolm_m
‘Bsw bBis

Yuil 1exa|dnnwap” Ggxe

[1e0edL7BIs]

GGl bis
BswBis

ﬂmmooidmxm_a:_:rclmu u
NI L L 1exadninwi"ap \

Mulj jauueyd Jaxajdininw ap

[XgsL7Bis]

_”mmElm_m”_
vmwwooal_wccmso uA
Ul DL L [auueyd

[auueyosnieIS1Iab bis

Jauueypuado‘erep Bis

_”mccmsumzﬁuml@_m.ﬂmclm_m”_

%

‘lauueydHasolo’

MUl |ouueys dde

% adAy uodsuel] adA1x20|q

Figure 10.1: An overview of the T55X layer.

53

December 20, 2001

CHAPTER 10. T55X LAYER

disconnect - This signal is used to close a connection between two T55X layers
and it will flush all data currently present in all channels on both sides.

e pause - This signal is used to close the connection between two T55X layers. Data
transmissions a resumed when connection is reestablished.

e sendConLess - This signal carries data that is sent without a connection.

e sig_data - This signal sends data to and from an application. The signal provides
a channel id and the data received.

e getStatus - This will tell the TTC to send a sig_receiveEvent to the application,
indicating the current status.

e sig_getStatusChannel - Enquires the TTC about the status of a given channel.
e sig_statusChannel - This signal is a respond to sig_getStatusChannel and

indicates whether a channel is open og closed.

Data-link Layer Signals

The only signal used on the interface to the data-link layer is sig_TPacket. The struc-
ture of this signal can be seen in Table 10.2. The info field specifies a primitive and
a primitive type. Table 10.3 shows all primitives used along with the primitive types
which are explained below:

Length: 8 bit 0 bit - 4 gigabyte
Carries: || Info field Data

Table 10.2: Structure of a TPacket signal.

e request - Used when sending a packet to AX.25.
e indication - Used when AX.25 has a packet to deliver.

e confirm - A confirmation that a packet was correctly received on the other side.

The data field can hold parameters for a primitive, for instance a DL_ERROR uses the
data field for an error number. The DL_DATA uses the data field for a T55X Packet.

Internal signals

The internal signals will be described in further detail in section 10.2. Here the frame
structure for the signal parameters between processes will be discussed.

54

Group 555

10.1. OVERVIEW OF T55X LAYER

| Primitive name |

Possibilities

DL_CONNECT

request, indication, confirm

DL_DISCONNECT

request, indication, confirm

DL DATA request, indication
DL _UNIT DATA request, indication
DL_ERROR indication

Table 10.3: Primitives and possible primitive types.

e sig_T55X - This signal indicates a T55X data packet. The structure of this packet
is shown in Table 10.4. The packet status field is used when establishing a
connection and negotiation is needed. The packet type field gives the possibility

to classify different packet types e.g.

start, stop and command packets.

The

channel id field indicates the channel on which the data is sent. The type info
field contains different kinds of data, depending on the packet type.

Length:

4 bit

4 bit

8 bit

24 bit

<= 16 megabytes

Carries

Packet status

Packet type

Channel id

Type info

Data

Table 10.4: Structure of a T55X packet.

e sig_msg - This signal carries a message between the processes, the structure of
the signal is shown in Table 10.5. Its main purpose is sending commands.

Length:

8 bit

8 bit

Carries:

Command

Id

Table 10.5: Structure of a message signal.

The possible commands in the command field are:

— ChannelGotData - Sent from the channel state machine to the TTC when
the channel has received data from an application.

SendData - Sent to the channel when it should send data to the TTC.
ChannellsClosed - Sent to the TTC, when a channel has been closed.

KeepOnSending - Command sent to the other side, indicating that it can
send its next data.

PriorityData - Arrives in the TTC when data arrives on a channel.

ConnectIndication - Arrives on both sides upon sending a connect request.

DisconnectIndication - Arrives, like ConnectIndication, on both sides upon
sending a disconnect request.

December 20, 2001

55

CHAPTER 10. T55X LAYER

10.2

— NoMoreData - Used to send to the other side, when there is no more data on

this side.

NoMoreDataOnChannel - Indicates that a channel has no more data to send.
Sent immediately after the last data has been sent from a channel.

FlushBuffer - Tells the channel state machine to flush data on all channels.

GetToken - Used when both sides has no more data to send, and the last side
informed of this suddenly receives data. Avoids that the two sides sends data
simultaneously.

Retransmit - Tells the other side that the last package had errors and must
be retransmitted.

LastPacketDiscarded - Sent to the TTC if the de-multiplexer receives a pack-
age, which it has all ready received before.

ErrorIndication - Received if a received package has errors.

e sig_conLess - This signal carries connection-less data between the de-multiplexer

and the TTC.

Functionality

In this section the functionality in the T55X is described in detail.

It may be a good idea to consult the SDL figures on the project CD-ROM in path
“design/Sdl/”, to understand in further detail, what is described in this section.

The main functionalities in the T55X are:

56

Send beacon
Connect
Disconnect
Pause

Send data
Negotiate

Error handling

Group 555 10.2. FUNCTIONALITY

Sender Sender Sender Receiver Receiver Receiver Receiver
application TTC AX.25 AX.25 de-multiplexer TTC application
sig_TPacket(
sendConLess(| DL_data_unit_request,
data) data) AX.25 packets
sig_TPacket(
sendConLess(| DL_data_unit_request,
data) data) AX.25 packets
sig_TPacket())
sig_TPacket(DL_data_unit_ sig_receiveEvent(
sendConLess(| DL_data_unit_request, indication, sig_conLess(Incommingdata,
data) data) AX.25 packets, data) data) data)
I . I I D I

Figure 10.2: MSC showing signals involved in sending a beacon.

10.2.1 Send Beacon

When no communication is established, it should be possible to send a beacon with a
certain interval. The size of this interval and when to send a beacon will be controlled
by an application.

Figure 10.2 shows when signals for the "send beacon functionality" are sent.

The application will send a sendConLess signal to the TTC containing the beacon data.
The TTC will then create a TPacket signal with the beacon data and a DL_DATA_UNIT_
REQUEST primitive. This primitive is used in AX.25 to send connection-less data, which
means that there is no guarantee that the data will arrive on the other side.

If the receiving side picks up a beacon, it will be delivered as a TPacket in the de-
multiplexer. This will then send a sig_conLess to the TTC, which will send the beacon
data to an application via the signal sig_receiveEvent.

10.2.2 Connect

When the two sides are within range of communication, one of the sides might want to
connect, either while it receives a beacon or while it has calculated that the satellite is
within range of communication. It sends a connectTo signal to the TTC. The TTC will
then send a TPacket to AX.25 with a DL_CONNECT_REQUEST primitive.

Figure 10.3 shows when the different signals involved in the "connecting" functionality
are sent.

If the connect request is successful, the receiving side receives a DL_CONNECT_INDICATION,
while the sending side receives a DL_CONNECT_CONFIRM. These primitives will be sent
from the de-multiplexer to the TTC, which will then set the receiving side in wait-
ing state and the sending side in running state enabling this side to send data. The
TTC’s will furthermore inform applications on both sides that the connection has been

December 20, 2001 57

CHAPTER 10. T55X LAYER

Sender Sender Sender Sender Receiver Receiver Receiver Receiver
application TTC de-multiplexer AX.25 AX.25 de-multiplexer TTC application
sig_TPacket(sig_TPacket(sig_msg(sig_
DL_connect_ AX.25 DL_connect_ connect receiveEvent(
connectTo request) packets indication) indication) Waiting)
AX.25
Sio_ sigmsg(| sig_TPacket(| ~Packets
receiveEvent(connect DL connect
Running) confirm) confirm)
;. ! 1 11 Jr | BN |

Figure 10.3: MSC showing signals involved in connecting.

established by sending the state of the side via a sig_receiveEvent.

10.2.3 Disconnect

Figure 10.4 shows when the different signals involved in the "disconnecting" functionality
are sent. The pause signal in the figure indicates, that there is no difference between
the last signals in disconnecting and in pausing.

Sender Sender Sender Sender Sender Receiver Receiver Receiver Receiver Receiver
application channel TTC de-multiplexer AX.25 AX.25 de-multiplexer TTC channel application
sig_TPacket(sig_TPacket(
DL_data_ DL_data_
request, AX.25 indication, sig_msg(sig_msg(
disconnect Flush buffer) packets Flush buffer) Flush buffer) Flush buffer)
- sig_TPacket(
samsal | sig_msg(DL_data_ sig_TPacket(
buffer) Keep on confirm, Keep | AX.25 DL_data_
sending) on sending) packets request, Keep
on sending)
Pause sig_TPacket(sig_TPacket(sig_msg(sig_
(only \(vhen DL_disconnect AX.25 DL_disconnect_ disconnect receiveEvent(
pausing) request) packets indication) indication) Disconnected)
Sig_ sig_msg(sig_TPacket(
receiveEvent(disconnect [DL_disconnect_ AX.25
Di: 1 i i :
isconnect) confirm) confirm) packets
1 = ' J J ! N | |

Figure 10.4: MSC showing signals involved in disconnecting and pausing.

When a side sends a disconnect to the TTC, the TTC will set order to disconnecting,
indicating to other events received in the TTC that its in a special mode. The TTC will
send a FlushBuffer request to the other side, which responds with an acknowledgment
upon receiving. On both sides the TTC will send a sig_msg to the channel state machine
requesting that it flushes its buffers. The status of the channels will be unchanged.

58

Group 555 10.2. FUNCTIONALITY

The TTC will also tell an application that it has been disconnected, again by sending a
sig_receiveEvent containing the state.

10.2.4 Pause

The signals in the pause functionality are shown on Figure 10.4.

Pause could be used to temporarily stop the communication. Pause is initiated by
sending a pause signal to the TTC. The TTC waits for the token before sending a
TPacket with a primitive DL_DISCONNECT_REQUEST. When DL_DISCONNECT_INDICATION
and DL_DISCONNECT_CONFIRM is received on either side the state is set to disconnected.
The TTC will also tell the application that it has been disconnected, again by sending
a sig_receiveEvent containing the state.

10.2.5 Send Data

The send data functionality consist of a set of sub-functionalities, which may be used in
any order:

e Channel status.

Open/close a channel.

Data/no data on channel.

Send data from highest priority channel.

No more data to send.

Channel Status

Figure 10.5 (1) shows signals involved in getting the status of a channel.

For an application to be able to send data to the channel state machine, the channel
has to be open. To check whether a channel is open or not, an application can send the
signal sig_getStatusChannel with a channel number as parameter. The channel will
then send a sig_statusChannel signal back to the application, telling whether or not
the channel is open.

Open/Close a Channel

Figure 10.5 (2) and (3) shows the signals involved in opening and closing a channel.

The application can open a channel by sending a openChannel signal to the channel state
machine. In the same way, if for some reason an application wants to close a channel, a
closeChannel signal is send to the channel. In the later case the channel state machine

December 20, 2001 59

CHAPTER 10. T55X LAYER

application channel TTC

(1) sig_getStatusChannel(Channelnumber)

sig_statusChannel(True or false)

(2) openChannel(Channelnumber)

(3) closeChannel(ChannelNumber) sig_msg(Channelnumber, Channel is closed)’

Figure 10.5: MSC showing signals involved in getting the status of a channel and opening
and closing a channel.

will inform the TTC that a channel has been closed by sending this information in a

sig_msg. The TTC will not send any more data from this channel even if there is more
data on the channel.

Data/No Data on Channel

Figure 10.6 shows signals involved in sending data from one side to the other.

Sender Sender Sender Sender Receiver Receiver Receiver Receiver Receiver
application channel TTC AX.25 AX.25 de-multiplexer TTC channel application
sig_msg(
(1) sig_data(| Ch, Channel
Ch, Alldata) got data)
_ (2)(Ch
sig_msg(tLh, sig_TPacket(sig_TPacket((When all
Send data) | “pi data_ DL_data_ data is here)
request, AX.25 indication, Sig_T55X(sig_data(Ch,
data) packets data) Ch, data) Alldata)
Sig_T55X(
Ch, data)
sig_msg(Ch,
3) Priority data)
sig_msg(Ch,
No more
data on
channel)

Figure 10.6: MSC showing signals involved in sending data to the other side.

In Figure 10.6 (1) it is shown how data is sent to a channel. When a channel is open,
the application can send data to it via a sig_data signal. The channel will then send

60

Group 555 10.2. FUNCTIONALITY

a sig_msg to the TTC, informing it that it has data. The TTC can then start to send
the data, when it is ready and this data has the highest priority.

In Figure 10.6 (3) it is shown what happens when the last data has been sent. When
a channel sends its last data packet, it will also send a sig_msg to the TTC, telling it
that there is no more data on this channel. The TTC can then either start to send data
on another channel, let the other side send or simply wait for more data to arrive.

Send Data From Highest Priority Channel

Figure 10.6 (2) shows the signals involved in the sending a single data package from one
side to the other.

When the TTC is ready to send a packet it will send a sig_msg to the channel state
machine, telling it to send data from the channel with the highest priority. When the
channel state machine receives this message it will create and send a T55X packet to
the TTC via a sig_T55X signal. The TTC will then send a TPacket containing the
primitive DL_Data_Request and the T55X packet and go into waiting state, allowing
the other side to reply.

When the TPacket signal arrives in the de-multiplexer on the other side, the T55X
packet is sent to the channel via the sig_T55X signal. The T55X packets will then be
reassembled in the buffer for the given channel and when the entire dataset has arrived it
will be sent to an application via a sig_data signal. From the de-multiplexer a sig_msg
signal is also sent, upon arrival of the TPacket. This signal will inform the TTC, that
data has arrived on the given channel.

The TTC will then check if it has data with a higher priority, than what it has just
received. If it has it will begin to send this, or else it will send a TPacket to the other
side, telling the other side to keep on sending data.

No More Data To Send

In Figure 10.7 the signals sent when the two sides has no more data to send are shown.

When one side has sent all its data, the TTC will send a TPacket to the other side,
telling it that this side has no more data.

If the other side does not have any data to send either, it will send a similar package,
but it will remain in running state. When the first side receives the signal it will also
enter the running state.

This way both sides are ready to send data. The difference between the two sides is that
on side has received a packet without sending another out. This results in a difference
between the counter on the last packet sent and the packet counter received from the
de-multiplexer. On the other side these two are the same, while a package has been
sent from here. When the side with no difference between the counters receives data to
transmit it has to ask for the token before it can send its data. With this solution both

December 20, 2001 61

CHAPTER 10. T55X LAYER

Sender Sender Sender Receiver Receiver Receiver
TTC de-multiplexer AX.25 AX.25 de-multiplexer TTC
sig_TPacket(sig_TPacket(
DL_data_request, AX.25 DL_data_indication, sig_msg(No
No more data) packets No more data) more data)

sig_TPacket(
sig_msg(No DL_data_indication, AX.25 sig_TPacket(
more data) No more data) packets DL_data_request,
No more data)

Figure 10.7: MSC showing signals involved when both sides has no data to send.

sides can initiate the communication simultaneously and still avoid the situation where
both sides have the same status and the same token.

10.2.6 Negotiate

This functionality is used to make sure that the last package sent before an error or a
disconnect is still received on the other side. When connection is lost the last package
sent may have not arrived on the other side. Important packages are therefore retrans-
mitted when the connection is reestablished. All packages are important, with a few
exceptions:

e Packages requesting a retransmit.

e All packages that are not sent as data packages. (Unit data, connect and disconnect
packages.)

The basic idea is that when side A receives a package from side B, this package also acts
as an acknowledgment of the last package sent by side A. By storing the last outgoing
package and giving it a number one larger then the last received package, it should
always be possible to locate the last package sent.

Figure 10.8 shows how the counters used for negotiation are set. The packet counter is a
concept that exists in de-multiplexer and the TTC. The numbers in the box just below
the process names on the figure (e.g. [2] under the de-multiplexers and [0,2] under the
TTC’s) are:

e TTC, left - The packet number stored in the last packet sent (lastPacket).

e TTC, right - The packet counter in the TTC. Increased when message is received
from the de-multiplexer. The current TTC packet counter will be set in the next
packet sent.

62

Group 555 10.2. FUNCTIONALITY

e De-multiplexer - The de-multiplexer packet counter is set when the de-multiplexer
receives a data packet.

Sender Sender Receiver Receiver
TTC de-multiplexer de-multiplexer TTC
I I I I
11 1 2 0,2

Connect confirm

Data(lastpacket) sig_msg(PacketDiscarded)

T

next sig_TPacket 2,2

sig_msg(PriorityData) |_3

13

Figure 10.8: MSC showing the values of the counters in a connect example.

The counter is a two bit counter, giving a total of four possibilities. The value of the
counter will therefore be between zero and three. Another bit, the negotiation bit,
is used to indicate that a package is used for negotiation.

The packet counter in the receiver de-multiplexer is not set when it receives the lastPacket
from the sender TTC. The reason for this is that the negotiation bit is set and that
the counter in the packet is one smaller than the packet counter in the receiver de-
multiplexer. The packet is therefore discarded and the receiver TTC is notified of this.
The receiver TTC will then send a packet, thus giving the counter in the new lastPacket
the value of the TTC’s packet counter. When the data packet is received in the sender
de-multiplexer, the packet counter in the sender de-multiplexer is set to the counter in
the received packet plus one. The sender will update its packet counter when notified
of the data reception.

Figure 10.9 shows the signals involved in negotiating and gives an idea of how negotiation
is conducted. A retransmit signal will always choose path (1a), whereas connect confirm
may select either (1a) or (1b) depending on the packet counter values. If path (1b)
is selected, communication will proceed as normal. On path (la) however another
selection must be made as the packet sent may have all ready been received, which
can be detected by checking the packet counter values. Path (2a) shows the situation
where the packet was not received before and therefore is sent to the channel. Path (2b)
shows the situation where the packet is discarded. In both cases the TTC is notified
and communication will proceed as normal.

December 20, 2001 63

CHAPTER 10. T55X LAYER

Sender Sender Receiver Receiver Receiver Receiver
TTC AX.25 AX.25 de-multiplexer TTC channel
connect confirm (1a)
or retransmit ; .
sig_TPacket(sig_TPacket(
®| DL_data_request, AX.25 |DL_data_indication,
sLastPacket) packets sLastPacket) . (2a)
P sig_T55X(Ch,
(1b) Next sLastPacket)

sig_TPacket \ »
connect onl sig_msg...
(y) g_msg

(2b) sig_msg(
Last packet
discarded)

Figure 10.9: MSC showing signals involved when negotiating upon a connect confirm or
a retransmit.

The two sides will negotiate when a packet is retransmit is requested or upon a connect
confirm. These two situations is described further below.

Retransmit

Retransmit errors occur on the receiving side and is an indication that the package sent
from the other side must be retransmitted. The errors are sent from the AX.25 through
the de-multiplexer to the TTC. The TTC sends a TPacket to the other side requesting a
retransmission. Before retransmitting lastPacket the TTC sets negotiate bit indicat-
ing that a negotiation is commencing. An important note is that a retransmit package
does not overwrite lastPacket. This way it is possible to have multiple retransmit
requests and still get the correct result.

Connect

When a side sends a connect request, it will eventually receive a connect confirm if the
connect was successful. The side will then proceed by checking the values of packet
counters in the TTC and the lastPacket. If the values are the same, the side will
proceed as normal. Else it will send its lastPacket with the negotiate bit set, making
sure that the packet is received correctly on the other side. The other side will check
this by checking the values of the received packet and the packet counter in the de-
multiplexer. If the value of the counter in the received packet is the highest, the packet
is received as normal. Else it will be discarded and the side will proceed as normal.

64

Group 555 10.2. FUNCTIONALITY

10.2.7 Error Handling

The purpose of error handling is to ensure that no data will be lost, no matter which
error is received from the AX.25. When dealing with errors it is important to realize that
errors can arise at all times. The different errors are categorized into groups, depending
on the effect they have on the data and the status. The following groups have been
categorized:

e Errors with no importance.

e Fault detected in packages received.

e Both sides gets disconnected, meaning that all data in AX.25 was discarded.
The first category is status information from AX.25 which, as indicated, does not have
any effect on the T55X layer.
An error from the second category indicates that data has been discarded on the receiv-
ing side. The receiving side will send a message to the sending side requesting that the
last packet is retransmitted. The sending side will then retransmit its lastPacket with
negotiate bit set. The specific functionality involved in this is described in section
10.2.6.

When an error of the last category occurs, all packages lost will be retransmitted, using
the normal negotiate method described in section 10.2.6.

10.2.8 Auxiliary Functionality

There are two auxiliary functionalities in the design of the T55X. These are:

e Initialization.

o Get status.

Initialization

The initialization must be sent from an application to the TTC before any other signal

and must be sent on both sides. It will send a sig_msg to the channel, telling it to flush
all buffers.

Get Status
If an application wants to know the status of the T55X it can send a getStatus signal

to the TTC. The TTC will then send its current state in a sig_receiveEvent signal.
The received states can be either disconnected, running or waiting.

December 20, 2001 65

Chapter 11

Test Specification

This chapter will specify the different tests, that must be conducted in order to validate
and verify the model. Before reading further it is recommended reading Appendix C.

11.1 Environment

When the simulation is to be conducted an environment has to be created. The AX.25
environment was originally planned to be a model of the AX.25 layer but since this model
was not available a simplified model is created. The model should have the following
capabilities:

e It should be able to send and receive primitives and changing these as the AX.25
prescribes.

e Simulate errors by dropping 'TPackets’ and sending out error messages.

Application environments are created specific to the simulation/test case. Even though
the model has been created to handle errors, the data link model has not implemented a
feature to drop packages, and it is therefore not possible to test for errors in the T55X for
now. Before tests are executed in exhaustive mode the errors are neglected. A possible
way to implement the errors would be to insert a state machine between the two AX.25
state machines which will replace some of the signals it gets with errors.

11.2 Functionality

In order to test each functionality, a simulation will be performed to check if the re-
sponses are as presumed. Table 11.1 comprises the output expected from a signal sent
to the T55X layer.

The tests in Table 11.1 will test each individual functionality. This means that it does
not test how the different functionalities interact when requested simultaneously. For

66

Group 555 11.3. SIMULATION

each functionality tested, it is recommended to refer to the appropriate figures in section
10.2.

When testing the different functionalities, they must reside in the correct test environ-
ment for the results to be valid. The test environments for the tests in Table 11.1 are
described below:

e Send beacon - Will be sent before anything else, thus there is no connection be-
tween the satellite and the ground.

Connect - Same environment as for send beacon.

e Disconnect - Connection has to be established between the two sides.

Pause - Same as disconnect.

Send data - Channel 2 is closed on the satellite. And connection is established
between the two sides.

11.3 Simulation

When the different functionalities have been tested individually, they should be tested
together. In order to do this a test scenario has been created. The expected output
and the purpose of the test steps are displayed in Table 11.2. This test will check if
the model can behaves as it is expected to, but it will not check if it always behaves
correctly.

Tests where the simulator in ObjectGEODE gives random inputs to a simulation should
also be conducted to find errors that will not emerge in tests constructed by the designer.

11.4 Verification

A verification of the model must be conducted, to ensure that the syntax of the model is
correct, e.g. there is no deadlocks, livelocks etc. The verification tool in Object GEODE
should be used for this test. It is imperative that the verification is completed, as errors
may have serious consequences on the satellite.

11.5 Validation

To check if the model behaves as expected there are two options: Verify, which cover all
traces in a state graph or searching for the behavioral pattern. The search option has
been chosen to be used because of the easier implementation.

December 20, 2001 67

CHAPTER 11. TEST SPECIFICATION

| Functionality | Input | Expected output
Satellite application: Ground application:
Send beacon sendConLess (sig_receiveEvent (IncommingData,
’112233445566778899°) ?112233445566778899°)
1. Satellite application: Satellite application:
getStatus sig_receiveEvent (Disconnected)
2. Satellite application: Ground application:
Connect . . s
connectTo sig_receiveEvent (Waiting)
Satellite application:
sig_receiveEvent (Running)
Satellite application: Ground application:
. disconnect sig_receiveEvent (Disconnected)
Disconnect Satellite application:
pPp
sig_receiveEvent (Disconnected)
Satellite application: Ground application:
pause sig_receiveEvent (Disconnected)
Pause Satellite application:
1YY
sig_receiveEvent (Disconnected)
1. Satellite application: Satellite application:
sig_getStatusChannel(2) sig_statusChannel(false)
2. Satellite application: No
Send data openChannel (2) output
3. Satellite application: Ground application:
sig_data(2, sig_data(2
’0123456789ABCDEF) ’0123456789ABCDEF’)

Table 11.1: Test scenarios for the functionality in the T55X layer. Signals are only sent
from the satellite. This will however test signals sent from both sides as the two sides
are identical in the model.

68

Group 555 11.5. VALIDATION
‘ Step ‘ Input Expected output ‘ Purpose ‘
Satellite application: Ground application: Initializes
sendConLess (sig_receiveEvent (the model.
1 ?112233445566778899°) IncommingData,
7112233445566778899°)
Satellite application: Ground application: Establishes
connectTo sig_receiveEvent (connection.
5 Waiting)
Satellite application:
sig_receiveEvent(
Running)
Satellite application: Satellite application: Find out
3 sig_getStatus- sig_statusChannel (if channel
Channel(1) false) 1 is open.
Satellite application: No Open
4 openChannel (1) output channel 1.
Satellite application: Ground application: Send
5 sig_data(1, sig_data(1, data on
’0123456789ABCDEF) ’0123456789ABCDEF) channel 1.
Satellite application: Satellite application: Find out
6 sig_getStatus- sig_statusChannel(if channel
Channel(2) false) 2 is open.
Satellite application: No Open
7 openChannel (2) output channel 2.
Satellite application: Next signal Send
8 sig_data(2, send before data on
’0123456789ABCDEF’) output is ready channel 2.
Satellite application: Ground application: Send a
9 disconnect sig_receiveEvent(disconnect
Disconnected) and flush
Satellite application: the
sig_receiveEvent(buffers.
Disconnected)
Satellite application: Ground application: Establishes
connectTo sig_receiveEvent (connection
10 Waiting) again.
Satellite application:
sig_receiveEvent(
Running)

December 20, 2001

CHAPTER 11. TEST SPECIFICATION

Table 11.2: Test scenario for testing the functionality in the T55X layer when all func-

| Step | Input | Expected output | Purpose
Satellite application: Satellite application: Find out
11 sig_getStatus- sig_statusChannel(| if channel
Channel(2) true) 2 is open.
Satellite application: Next signal Send
12 sig_data(2, send before data on
’0123456789ABCDEF) output is ready channel 2.
Satellite application: Ground application: | Disconnect.
pause sig_receiveEvent(
13 Disconnected)
Satellite application:
sig_receiveEvent(
Disconnected)
Satellite application: Satellite application: Find out
14 sig_getStatus- sig_statusChannel(| if channel
Channel(1) true) 1 is open.
Satellite application: Status is Send
15 sig_data(1, disconnected data on
’0123456789ABCDEF’) channel 1.
Satellite application: Ground application: | Establishes
connectTo sig_receiveEvent(connection
Waiting) again,
sig_data(1, and
16 ’0123456789ABCDEF) receive
sig_data(2, data on
’0123456789ABCDEF) the two
Satellite application: channels.
sig_receiveEvent(
Running)

tionalities are working together.

70

Group 555 11.5. VALIDATION

In Figure 11.1 a MSC tree has been created which describes some of the main behavior
in the model. The first consideration is at the top level hierarchy which is an ’and’
composition. This means that the initialize signal must be sent at some point. This
is reasonable since it should be the first signal at each end. The ’repeat’ composition
is needed because the connectTo signal can be transmitted more than once. Following
downward is the ’and’ composition which guarantees that there is an connection is
established before sending any data. The three leaves: SendData, pause, disconnect can
all be run multiple times because of the 'repeat’ above the ’or’ composition. The MSC
leafs are shown in figures 11.2 to 11.6.

This validation only shows that this specific behavior is possible not that this is always
true.

AND rerear (D
|_T_| |_|_|
1 1
Init Sat Init Ground AND
N N

I_T_l

1
\ connectTo REPEAT C)
]

OR
:

REPEAT C) \ pause \disconnect
T

\ sendData

Figure 11.1: Behavioral MSC tree of the SDL model

December 20, 2001 71

CHAPTER 11. TEST SPECIFICATION

Init Sat

Application_sat

SendConLess(Beacon)
—>

Figure 11.2: Leaf which describes both initialization at ground and satellite.

connectTo

Application

getStatus

sig_receiveEvent(disconneted
connectionRequstSent)
connectTo

>
¢ sig_receiveEvent(

connetConfirm,empty)

Figure 11.3: Leaf describing the connectTo pattern.

72

Group 555 11.5. VALIDATION

sendData

Application

Si etStatusChannel(2
9.9 (2)

sig_statusChannel(disconneted,
connectionRequstSent)
openChannel(2)

sig_data('data’)
.

Figure 11.4: Leaf describing the sendData pattern.

pause

application

pause

sig_receiveEvent(disconnect,empty)
‘_

Figure 11.5: Leaf describing the pause pattern.

December 20, 2001 73

CHAPTER 11. TEST SPECIFICATION

disconnect

Application

disconnect
—>

sig_receiveEvent(disconnected,empty
‘_

Figure 11.6: Leaf describing the disconnect pattern.

74

Chapter 12

Design Validation

In this chapter the design test is described. The tests will be conducted accordingly to
the test specification in Chapter 11. Through out this chapter references to directories
on the project CD-ROM are made as e.g. /SDL/

12.1 Simulation

The functionalities which are tested using non exhaustive simulation are:

e Send connection less data

Connect

Send Data

Pause

e Disconnect

These will be tested using the AX.25 environment described in section 11.1. An appli-
cation is created which can be used to test all the different functionalities. This can
be seen in /SDL/ in the transport.pr file. All the tests are performed when both the
T55X layers are initialized. The satellite has been chosen to be the initiating part.
Common for all test are that a scenario was built as described in the test specification.
The input signals from 11.1 are feed to the model manually, afterwards Object GEODE
chooses random transitions to complete the simulations. The MSC created by Ob-
jectGEODE was edited so the only items left were the application and the interfacing
processes. The unedited MSC can be found in /MSC/functionality/ . On figure 12.1 to
12.5 the MSC results can be seen.

All of the test had the expected result as specified in the test specification.

75

CHAPTER 12. DESIGN VALIDATION

hpplicationground.application_process

PROCESS /transport/
applicationground/
application_process(1)

transportground.ttc_process

PROCESS /transport/
transportground/
ttc_process(1)

sendconless('112233445566778899'H)

transportsat.ttc_process

PROCESS / applicationsat.application_process
transport/

transportsat/ PROCESS /transport/

ttc_process(1) applicationsat/

application_process(1)

sig_receiveevent((. 4,'112433445566778899'H|.

—

Figure 12.1: MSC for the send connection less functionality. First the signal sendconless
is seen with the data parameter 112233445566778899 which is later seen received on the
application on ground. The number 4 indicates an event type for connection less data.

PROCESS /transport/

applicationsat.application_process

transportsat.ttc_process
PROCESS /

applicationsat/ transport/
application_process(1) transportsat/
connectto tic_process(l
getstatus
sig_receiveevent((. 3'q1'H .))
connectto
sig_receiveevent((. 0,"B .))
|]

transportground.ttc_process

applicationground.application_process

PROCESS /transport/
applicationground/
application_process(1)

PROCESS /transport/|
transportground/
ttc_process(1)

sig_receiveevent((. 1,"B.))

\

Figure 12.2: MSC for the connect functionality. First the application checks the con-
nected state of the TTC. The TTC responds with a sig_receiveEvent with parameters
3 indicating disconnected and '01’H indication no connect request has been sent yet.
Now the actual connect request is sent. Later when the connection has been made the
two applications are informed with another sig_receiveEvent. The parameter: 0 is
a connect confirm and 1 is a connect indication. The ”B indicates a placeholder for a
parameter which are not used.

76

Group 555

12.1. SIMULATION

applicationsat.application_process

PROCESS /transportj
applicationsat/
hpplication_process(1)

senddata

transportground.channel_process
applicationground.application_process

transportsat.channel_process

PROCESS /transport]
transportsat/
channel_process(1)

kig_getstatuschannel(2)

sig_statuschannel(trpe)

lopenchannel(2)

kig_data(" 9ABCIEFH,02H)

PROCESS /transport/
transportground/
channel_process(1)

PROCESS /transportj
applicationground/
hpplication_process(1)

sig_data('0123456789ABCDEFH, 02'H)

_\b

Figure 12.3: MSC for the send data functionality. At first the application checks the
status of channel number two. Then the channel is initialized before sending data to it.
Some time after the data is received on ground.

applicationsat.application_process

PROCESS /transport/

transportground.ttc_process

transportsat.ttc_process

applicationsat/ P::ggggﬁ/ /
application_process(1) ransportsat/
ttc_process(1)
pause
pause
sig_receiveevent((. 3,"B .))
| I

PROCESS /transportf
transportground/
ttc_process(1)

big_receiveevent((. 3,"B.))

I

applicationground.application_process

PROCESS /transport/
applicationground/
application_process(1)

Figure 12.4: MSC for the pause functionality. The application sends pause to the TTC

which responds with status disconnected when this becomes true.

application gets informed when the T55X layer becomes disconnected.

December 20, 2001

Also the ground

7

CHAPTER 12. DESIGN VALIDATION

applicationsat.application_process transportground.ttc_process
transportsat.ttc_process applicationground.application_process
PROCESS /transport/ PROCESS /transport/
applicationsat/ PROCESS / transportground/ PROCESS /transport/
application_process(1) transport/ ttc_process(1) applicationground/
transportsat/ application_process(1)
ttc_process(1) PP P

disconnect

disconnec

s{i)q_receiveevent((.3"B.)

é—

gg_receiveevent((. 3,"B.))

Figure 12.5: MSC for the disconnect functionality. The signals in the interface to the
applications correspond to the pause functionality. The only difference is that it begins
with a disconnect.

The next test specification is all functionalities combined in a specific trace in the model.
Again all of the signals not concerning the interface of either application has been re-
moved, the unedited MSC is in file compleateSpecificTest.eps in /MSC/functionality
on the project CD-ROM. The MSC has been divided into three figures 12.6,12.7 and
12.8. Since each functionality has been described the only interesting functionalities will
be highlighted. The entire test specification could be read while following the MSC but
this is left as an exercise for the reader.

78

'Disconnect’ - The flush functionality of the disconnect is shown in Figure 12.7.
The important signals to observe is that data is sent on channel two. Then before
finishing the transmission a disconnect occurs which flushes the buffers. Again
the connection is established and another data transmission on channel two is
attempted. By accepting this transmission it shows that the channels have been
flushed.

'Pause’ - The pause/resume functionality is shown in Figure 12.8. The things to
notice is that data is being transmitted on channel two before the pause signal.
Afterwards a connection is established and the transmission continues. The data
is received in the last signal sig_data.

Send data - In Figure 12.8 below the pause which couses both applications to
receive a sig_receiveEvent, data is transmitted on channel while not connected.
When the connection is reestablished the data is transmitted and received as the
second last signal sig_data

Highest priority data - Noticing that in Figure 12.8 data on channel two is sent
before data on channel one, and by seeing that the first data to be received is the

Group 555 12.2. VERIFICATION

data which was on channel one shows that the highest priority is transmitted first.

Even though these tests of functionalities all have had the expected results nothing can
be said about every test case. To test every case the exhaustive mode is needed which
will be described in section 12.2 and section 12.3.

12.2 Verification

When conducting this test a few simplifications has been made.

e Both application layers are initialized.

e Filter conditions has been added, to maintain the queue length on processes equal
to or below two.

o The number of channels are limited to three.

When conducting this test it became apparent that the models were too complex and an
exhaustive simulation with all signals would take too much time and require too much
machine power. The signal feed to the model was changed so that only one type of signal
was tested at a time. These test completed with no errors. This form of verification
cannot be used to guarantee that errors will not appear when all signals are added.
An attempt was made to simplify the model so that an exhaustive simulation could be
possible. The following items was tried:

e Connect was limited to states were the TTC state machine was disconnected and
relying on the TTC to inform about its state instead of using getStatus.

e Open/Closed was removed for a channel, making the channel inform when there
was room on a channel.

With these simplifications the time to exhaustively test a signal decreased but not
enough to test all signals at once. If applied to the entire model this approach could be

used to reduce the number of states that the simulator must explore and finally make
it possible to run a exhaustive simulation.

12.3 Validation

Validation is used to check that the model responds to stimuli as stated in the require-
ment specification. When informing ObjectGEODE two formalisms for expressing the
requirement specification are used:

e Stop conditions - Expresses a condition which halts the system if true.

December 20, 2001 79

DESIGN VALIDATION

CHAPTER 12.

|ss@o01d ™ jauueyo resyodsuel

ssao04d” uoneoijdde yesuonesdde

jHodsuen/SS300Ud

ssad0.d” |auueydpunoiblodsuen
ssa204d 2N’ punosbriodsuen
ssao04d” uoneoidde punoibuones)dde

" 9.'T ") uanaaniaoal bis

22TT.'v)))uanaanisdal bis

(H.6688..995GVVEEZZTT,)SSOIUOIPUSS

(H.T0.'H43A0PaVv68.95~€ZTO. Jerep As
(T)1duueyouado
(‘ann)jdpueyosniers bis
(T)joUUeyOSNIRISISN BiS
P1eppuas
((g.'0[) huansanedal bis
(
01108UU02
: ‘e *) Janagdnieoar BIs
(C HTOE) W I J—
01199UU02
((|H.6688.299SSP7EEZZTT ¥ *))1udnsan@dal Bis
((H.6688L299557vE]
(H.6688.299G5¥7€€ZZTT.)ssa|uoopuas
nuy
BT
(T)sse204d o1
= /resuodsuen) (T)sseo04d " |auueyd
(1)sss004d " jauueyd /uodsuen IpunoJBliodsuen e
/respodsues) £S300ud odsuenyssa00Nd (T)ssa204d o0
niodsuelyss3n0odd - (f)ssa201d"uonesydde /punoibuodsuen
ssa201d ™ op'1eSpodsuen /resuoneoldde 1odsuel)SS3ID0dd

—~

nul

[)ssao0id uoneoidde
/punoiBuoneoidde
juodsuel/SS3I00Yd

nuy

ion.

ty test specificat

li

10na

MSC number 1 for the combined funct

Figure 12.6

80

12.3. VALIDATION

Group 555

('enan)jsuueysgniels Bis
(2)1suueyosmieisiah bis
ejeppu
((9.'T) uanssnzoar Bis
((C gl.'0 *) husnsanieoas Bis
0)199UU0d
((H.TO.'S *) Juanaanigoal Bis
snyejsah
01J08UU02
((a.'c) nuanasnizoar BIs
((|.'c) uansanzoal Bis
108UU0JSIP
109UUOISIP
(@sfey)jpuureyoasniels” bis
(');suueyosmrelsiah bis
eleppuas
(H.20.'H.43a09v68.9k7€2T0. Jerep bis

(2);duueysuado
(‘ann)jpuueyopnieis bis

Z)jauueyosnielsiab bis

eleppuas

(HT

0.'H.43Q08V68.957E2T0.)

erep Bis

S

1011.

ty test specificati

li

10na

MSC number 2 for the combined funct

Figure 12.7

81

December 20, 2001

DESIGN VALIDATION

CHAPTER 12.

((g.'0 [) uanasnedar bis

(C HT0J[g) Wuanaanieoal bis

(H.20.'H4

3Q049V68.9S7E€2TO. Jerep |

b

S

(H.TO.'H4

3Q049Vv68.957€2T0. Jerep |

bis

(H.T0H.43a08Vv68.95V€ZTO.

(T)j2uueyouad

(‘anan)jpuueyopnieis bis

(T)1BUURYDST

(([a.'€) uanaanz2as bl

asned

(H

20.'H.43d09Vv68.95vECT

(z)1suueyouado

((9.1) huensaniedal Bis

0]108UU0D
snyejsiab

SRRE &)
elep Bis
lre1s1ab bis

eleppups

((g.'€ ") uansanizoal bis
asned

Jerep Bis

ion.

ty test specificat

li

10na

MSC number 3 for the combined funct

Figure 12.8

82

Group 555 12.3. VALIDATION

e MSC - Expresses a part of the model as a signal sequence. Parts can be put
together to form the complete system.

From the previous experience it was decided that exhaustive simulation was not possible.
This removes the possibility for validating the model.

December 20, 2001 83

Chapter 13

Summary

This part has described the design phase of the T55X layer in SDL.

First an overview was given of the layer, explaining the signals and signal structure.
This was preceded by a more detailed description of the most important functionalities
in the layer.

Next test specifications for simulation, verification and validation tests were stated.

A description of the completed test and the results of these were given. It was not
possible to validate the model, but simulations suggested that the model was correct
accroding to its specification. The next step is to further simplify the model so that an
exhaustive simulation is possible within reasonable time.

84

Part 1V

Implementation

FAW AN B e] V.2

Aalborg University

This part describes the implementation and test of the system. The AX.25 protocol has
been partly implemented and tested. The implemented modules are described and a
list of missing parts from the AX.25 implementation is specified. The T55X layer is not
implemented, but the structure of a potential implementation is described.

85

Chapter 14

AX.25

This chapter documents the implementation of the AX.25 protocol. The following top-
ics will be covered: Modifications to the original AX.25 design, implementation envi-
ronment and the actual implementation, including the different modules and common
definitions. Furthermore test specification for the different modules will be presented.
It is recommended as a minimum to have read Appendix B, but for the full understand-
ing the AX.25 documentation found in [5] can be necessary. The c-program for the
implementation can be found on the project CD-ROM in the folder ‘sourcecode/’.

14.1 Modifications

In general there is no implementation specification available for the AX.25, as stated in
[5], hence this chapter will cover a specific implementation that satisfies the requirements
for this project. This section will cover the parts of the protocol that has been modified
or left out entirely.

14.1.1 Segmenter

In this implementation the segmenter is divided into two parts: A segmenter module
and a reassembler module. The purpose is to have as many independent modules as
possible when distributing assignments in the implementation.

Segmenting connection-less (data in U-frames) is very poorly described in the AX.25
specification, because it requires the PID-field, which is not part of an U-frame. It was
decided not to segment connection-less data, which means that the maximum length
of connection-less data is 256 bytes. Since connection-less data is only used in beacon
mode this will not be a problem, because the required length is 256 bytes, as stated in
chapter 7.

87

CHAPTER 14. AX.25

14.1.2 Physical Layer

Since the hardware interface was not available from OSSS when the implementation
started, it was not possible to use the correct device driver or hardware. To test the
rest of the implementation it was decided to implement a physical layer that utilizes
the TCP/IP protocol stack, so tests could be done on any network using the TCP/IP
protocol stack. Unfortunately a group member decided to take a leave from his studies
before finishing this implementation. Because of this situation the physical layer will
not be documented further in this report and have not been fully implemented.

14.1.3 Management Data-link

This part has not been implemented because there was no time for it. Leaving this
part out instead of another was decided because it is possible to test the actual data
transmission functionality of the AX.25 protocol without this part.

Recalling from section B.1.1 in the AX.25 appendix the management data-link part is
responsible for negotiating parameters between two AX.25 protocols. Instead of nego-
tiating these parameters they are implemented as constants in this implementation.

Leaving this part out in the final implementation might not be possible because it makes
it impossible for radio amateurs to contact the satellite if they are not using the same
parameters.

14.1.4 Data-link

Because of time constraints, timers have not been implemented in the data-link module.
The functionality of the timers are encapsulated in separate functions, so the only thing
missing is implementing the timers using the facilities offered by the desired operating
system.

14.1.5 Link Multiplexer

The link multiplexer is implemented without any multiplexing features, since there is
only one data link available. Therefore the link multiplexer state machine is simply a
dummy layer connecting the data-link state machine to the physical state machine. It
will always allow the data-link state machine to seize control of the radio. The link
multiplexer is included in order to avoid changes in the data-link state machine. (The
data-link state machine could just as well access the physical layer).

88

Group 555 14.2. PLATFORM AND ENVIRONMENT

14.2 Platform and Environment

Because there was little time for the implementation process it was decided to implement
the protocol in a Solaris operating system running on a SPARC processor (the servers
at the university). This is a well known platform for the group, and was chosen to avoid
spending time on the practical problems (constant upload of new software, debugging,
testing, etc.) involved in implementing software for an embedded micro-controller and
for the group, new operating system.

The only compiler available for the on-board computer is an ANSI-C compiler, hence
this implementation is also programmed in this language, so that most of the code can
be reused in the final implementation.

Implementing the protocol for the satellite will be a matter of porting the source code
to the operating system and the on-board computer. Some specific parts that will need
to be ported is the thread concept and memory allocation.

14.3 Common Definitions

This section lists and describes the common data structures and constants in the imple-
mentation. All definitions are in the ax25.h file that can be found on the project CD
in /c.

14.3.1 Data Structures

The common data structures in the AX.25 protocol are the frames send between modules
and between two peers.

I-frames are defined as structs with the elements listed:

typedef struct {
unsigned char address([14];
unsigned char control;
unsigned char pid;
unsigned char *data;
unsigned char datalength;
unsigned short int fcs;

} iFrame;

U-frames are also defined as structs, but with different elements:

typedef struct{
unsigned char address[14];
unsigned char control;

December 20, 2001 89

CHAPTER 14. AX.25

unsigned char *data;

unsigned char datalLength;

unsigned short int fcs;
} uFrame;

Finally S-frames are defined as:

typedef struct{
unsigned char address[14];
unsigned char control;
unsigned char *data;
unsigned char datalength;
unsigned short int fcs;

} sFrame;

One may notice that the S-Frame struct is similar to the U-Frame struct. It is defined
independently to differentiate between the different data frames.

14.3.2 Constants

As stated in section 14.1.3 the management data-link part has been left out, hence
those parameters normally negotiated are defined as constants, which along with other
constants are defined here:

e N1=256 - The byte length of the info field (N1 is not very descriptive but is used

in the implementation because it is used through out the documentation of the
AX.25).

e N2=10 - Number of retries.
e WINDOW_SIZE=7 - Sliding window size.
e MY_CALLNAME={’a’,’b’,’c’,’d’,’e’} - Call-name used for source address.

e DEST_CALLNAME={’b’,’b’,’c’,’d’,’e’} - Call-name used for destination ad-
dress.

14.4 Overview

This section will give a general overview of the modules in the implementation and how
they interact. Figure 14.1 illustrates how the implementation is structured regarding
interfaces and threads.

90

Group 555 14.4. OVERVIEW

T55X

AX25

Thread Function libraries

Data-link
! Segmenter

N)

™ Re-assembler

Link multiplexer

A4

Physical
statemachine

Hardware

Figure 14.1: Overview of the AX.25 implementation.

December 20, 2001 91

CHAPTER 14. AX.25

The only thread in the system is the data-link state machine. It communicates with
the T55X and the hardware through the function libraries available. This means that
frames are send from the segmenter to the data-link state machine they will be stored
in a queue and the thread will process them later.

In the following sections all the implemented modules are described.

ating segments two and one. The frames will look like this:

PID Info
0x8 | 2 3 4
PID Info
0x8 |1 5 6

The last frame is generated outside the loop, because it has a unique length. Besides
the dataLength parameter in the frame the last frame is generated as the other frames.
In this example there is a single byte left, and the last frame will look like this:

PID | Info
0x8 0o 7

Finally the function will return a DATA_OK value.

UnitDataRequest

As stated in section 14.1 connection-less data can not be segmented, hence this function
is rather simple. If the data is larger than N1 it will return the DATA_TOO_LARGE value
and if the data is smaller than one byte it will return the DATA_ERROR value. If the data
was valid an U-frame is generated, send it to the data-link module and a DATA_OK value
is returned.

14.4.1 Test Specification

The functions in this module is tested using the white-box technique, to cover all paths
through the flowchart in Figure ?? and through the flow in the UnitDataRequest func-
tion.

During the test of the functions the N1 constant is set to 256, which is the default value.

The data is considered as arbitrary, hence only the length parameter is specified. During
the tests the data will be verified, but the content of the data is not important, because
it has no influence on the flow in the functions.

The outputs that will be tested upon are:

e The return value of the functions.

e The frames send to the data-link module.

92

Group 555

14.4. OVERVIEW

In the test cases that produces frames the frames will be verified to have the content
defined in section 77.

DataRequest

To test all paths through this function the following test cases are used:

Test Input Output Purpose

Case

1. Length =0 Return To test that the
DATA ERROR. function will return

the right value if the
length is less than 1
byte.

2. Length = 256 Non-segment frame | To test that the non-
with the entire | segmenting part of the
data, and return | function works.
DATA OK.

3. Length = ((N1 —1) - | Return To test that the func-

128) + 1 = 32641 DATA TOO_LARGE] tion will return the
right value when data
is too large.

4. Length = 1018 4 frames with 255 | To test the segmenting
bytes of data in the | part with a special last
first three and only | frame.

253 bytes in the last
frame and return
DATA OK.
5. Length = 4 -255 = |4 frames with 255 | To test the segmenting
1020 bytes of data in | part when data fits in
each and return | Nl-sized frames.
DATA OK.
6. Length = (N1 —1) - | 128 frames with 255 | To test that the func-
128 = 32640 bytes in each and re- | tion will have the ex-
turn DATA _OK. pected result even at
the maximum length
of the data.
UnitDataRequest

To test this function three test cases are used:

December 20, 2001

93

CHAPTER 14. AX.25

Test Input Output

Case

7. Length =0 Return DATA ERROR.

8. Length = 256 Send U-frame to data-link and return
DATA OK.

9. Length = 257 Return DATA TOO_LARGE.

14.5 Reassembler

The reassembler module is responsible for receiving segments from the data-link module
and reassemble them into data.

14.5.1 Interfaces

The interface to this module from the data-link module is the two functions:

e char DataIndication(iFrame* frame) - Used to reassemble segments send in
connection-oriented mode, and send the reassembled data to the T55X layer.

e char UnitDataRequest(uFrame* frame) - Retrieves the data in an U-frame and
sends it to the TH5X layer.

The module declares the following constants:

e DATA_OK=1 - Data was send successfully.
e OUT_OF_MEMORY=2 - Allocating memory for the data failed.

e DATA_ERROR=3 - Segments were received out of order.
The interface to the T55X layer is:

e void receiveDataFromAX(char* start,int length) - Receives data send in
connection oriented mode.

e void receiveConLessDataFromAX(char* start,int length) - Receivesdata send
in connection-less mode.

14.5.2 Data Structures

The input to this module is U- and I-frames where the PID and the first byte in the
INFO-field is formatted as described in section ?7?.

The module has four static variables:

94

Group 555 14.5. REASSEMBLER

e charx buffer:Pointer to a dynamically allocated buffer to hold the reassembled
data.

e int offset:Indicates the offset (where to put the next segment) in the buffer.

e char reassembling:Used to detect errors if a start segment is received before all
segments in the previous data block was received.

e remain:Indicates how many segments remain before a complete data block is fully
reassembled. Along with the remain information in a segment this variable is used
to detect if segments are received out of order (an error in the order of segments
should not happen in the reassembler, but error detection is done to prevent the
protocol from crashing if it happens anyway).

14.5.3 Functions

In what follows the functions in the module are described.

DataIndication

This function is responsible for retrieving data from I-frames and reassemble it into the
original data block. Furthermore the function will also free the memory allocated for
the data in the I-frames and detect errors in the reassembling process.

The flow in the function is illustrated in Figure 14.2.

In the following two examples will be used to describe the functionality of this function.
The I-frames generated from the two examples in section ??, will be used as input in
the examples, hence N1=3 in these examples as well.

Example 1 In the first example the input is a frame, that has PID = 0xF0, which
means that it is a single segment and the first decision box will branch to the left. The
data is send to the T55X layer, the memory allocated for the frame is freed and the
function returns DATA_OK.

Example 2 All the frames in the second example has PID = 0z08, hence the first
decision box will branch to the right and the number of remaining frames is stored in
thisRemain.

Segment 1: Recollecting that the INFO-field in the first frame was '131’, ’1’, ’2’, gives
that it is the first segment (M SB = 1 in 131) and thisRemain is 3 (131 — MSB = 3).
The next decision box will branch to the decision box directly below it. If the function
is already in the reassembling state (reassembling=1) the memory allocated for the old
buffer is freed. The reassembling state is set, the offset variable is reset and memory
for buffer is allocated to hold the entire data.

December 20, 2001 95

CHAPTER 14. AX.25

[Datal ndication J

Free buffer

thisRemain
==reman

Freethe
frame data

v

Freethe
frame

| Send datato framepid thisRemain =
T55X ==0xF0 frame.remain
Freethe g | offset=0 |-
frame data
Freethe Allocate memory || reassembling
frame for buffer =1
Return R
OUT_OF_MEMORY rgmal n B
thisRemain
Freethe offset = offset + < Put data from frame
frame data i frame.datal_ength to buffer offset
> Freethe thisRemain Send datato
frame ==0 T55X
Return || remain= ¢ reassembling

96

—y

Return

DATA_ERROR

Figure 14.2: Flowchart of the Datalndication function

Group 555 14.5. REASSEMBLER

In this case the size of the buffer is:

(1 + thisRemain) * (N1 —1)=4%2=38

Even though the size of the original data is only 7 bytes the function needs to allocate
8 bytes, to comply with the worst case scenario where the last frame also contains 2
bytes, which is not known when the first segment is received.

If the function fails to allocate memory for the buffer (buffer=0) it will free the memory
allocated for the frame and return a OUT_OF_MEMORY value.

When memory is allocated successfully the static remain variable is set to thisRemain
to indicate how many segments are still missing in the buffer.

When reassembling the first segment the next decision box will always branch to the

right where the data in the frame is copied to the buffer and the offset variable is

updated according to the length of the data. The buffer and offset now looks like this:
|1[2][0[0]0][0]0]0]| offset=2

Since this is not the last segment (thisRemain!=0) the function will decrease the remain
variable, free the memory allocated for the frame and return a DATA_OK value.

Segment 2 & 3: The next two segments come to the decision box where thisRemain is
compared to remain. With the given input in this example this comparison is always
true, but if for instance thisRemain=1 in the first of the two segments the comparison
is false because remain=3-1=2 after the very first segment.

After the decision box the two segments are processed like the first segment and the
buffer and the offset changes like this:

|1]2]3[4]0]0]0][0] offset=4
|1]2]3[4]5]6]0]0] offset=6

They will both return in the same way as the first segment.

Segment 4: When data is copied from the last frame to the buffer and the offset is
updated they will look like this:

[1[2[3]4]5]6][7]|0] offset=7

This time thisRemain=0 and the function calls the receiveDataFromAX function in the
T55X transport layer. The offset variable is used as the length parameter.

UnitDataIndication
This function retrieves data from U-frames and sends it to the T55X layer as connection-
less data. After data is retrieved it will free the memory allocated for the data in the

frame and return a DATA_OK value to the data-link layer.

December 20, 2001 97

CHAPTER 14. AX.25

14.5.4 Test Specification

The DataIndication function will be tested using the whitebox-technique to cover all
paths through the flow chart in Figure 14.2. The UnitDataIndication function will be
tested using the blackbox-technique, since it is has a simple sequential flow. Besides the
test specifications for the two functions there is also a test specification for a test that
will test the reassembler working togehter with the segmenter.

During the test of the functions the N1 constant is set to 256, which is the default value.

For the same reasons as in the test of the segmenter, described in section 14.4.1, the
data in the frames is considered as arbitrary.

There are two outputs that will be tested upon:

e The return value of the functions.

e The data send to the T55X transport layer.

DataIndication

In this test the varying input parameters are: PID, first byte in INFO-field and the
order of the frames. In all test frames the length of the data is at its maximum, which
is 256 bytes for single frames and 255 bytes for segmented frames.

To test all paths through this function the following test cases of the varying parameters
are used:

e Test Case 1:
Purpose: To test the part of the function that handles single segments.

Input:

PID | First byte in INFO-field
0xF0 Data

Output: Send 256 bytes of data to TH55X transport layer and return DATA_OK.

e Test Case 2:

Purpose: To test the part of the function that handles the first-, middle- and
last segment, when segments come in the correct order.

Input:

PID | First byte in INFO-field
0x08 131

98

Group 555 14.5. REASSEMBLER

PID | First byte in INFO-field
0x08 2

PID | First byte in INFO-field
0x08 1

PID | First byte in INFO-field
0x08 0

Output: Return DATA_OK three times, send 4 - 255 = 1020 bytes of data to T55X
transport layer and finally return DATA_OK for the last frame.

e Test Case 3:

Purpose: To test the part of the function that handles the situation where reassembling
=1 when a first segment is received.

Input:

PID | First byte in INFO-field
0x08 130

PID | First byte in INFO-field
0x08 1

PID | First byte in INFO-field
0x08 130

PID | First byte in INFO-field
0x08 1

PID | First byte in INFO-field
0x08 0

Output: Return DATA_OK four times, send 3 - 255 = 765 bytes long data to T55X
transport layer and finally return DATA_OK for the last segment.

o Test Case 4:

Purpose: To test the part of the function that finds error in the order of seg-

ments.

Input:
PID | First byte in INFO-field
0x08 131
PID | First byte in INFO-field
0x08 2

December 20, 2001 99

CHAPTER 14. AX.25

PID | First byte in INFO-field
0x08 0

Output: Return DATA_OK two times and then return DATA_ERROR for the last seg-
ment.

e Test Case 5:

Purpose: To test the part of the function that handles memory allocation fail-
ures.

Input: Any arbitrary frame with MSB in the first byte of the INFO-field set to
'1’ (memory is allocated when the first frame is received). To trigger a memory
failure the function needs to be altered to do so in all cases.

Output: Return OUT_OF_MEMORY

UnitDataIndication
e Test Case 6:

Purpose: To test that the function sends the correct data to the T55X layer.
Input: Any arbitrary U-frame with dataLength=256.

Output: The 256 bytes of data is send to the T55X transport layer and return
DATA_OK.

Segmenter and Reassembler

The purpose of this test is to do a blackbox test of the segmenter and reassembler working
together. From a test program, data with varying length is send to the segmenter and
send on to the data-link module in frames. From the data-link module the frames is send
back to the reassembler where the reassembled data is send back to the test program.
When data is received back at the test program it should be compared to be the same
as the data send to the segmenter.

14.6 Data-link

The data-link state machine described in AX.25 is the part of the protocol that carriers
out a lot of the essential data-link layer functionalities - e.g. flow control, retransmission,
acknowledgment etc. The data-link state machine uses the link multiplexer in order to
transmit data.

100

Group 555 14.6. DATA-LINK

14.6.1 Interfaces

The interfaces available to upper layers are:

e char DLDataRequest(iFramex frame) - Used to send data in connected mode
received from the segmenter.

e char DLUnitDataRequest(uFrame* frame) - Used to send data connection-less
received from the segmenter.

e void DLConnectRequest() - Used by upper layer to request a connection.

e void DLDisconnectRequest() - Used by upper layer to request termination of
a connection.

The interface to the reassembler is:

e void DLDatalndication(iFrame* frame) - Used by the data-link module to
send incoming data (in connected mode) to the reassembler.

e void DLUnitDatalndication(uFramex frame) - Used by the data-link module
to send incoming connection-less data to the reassembler.

The interface to the T55X layer is:

e void DLErrorIndication(char error) - Handles errors indicated by the data-
link state machine. The error parameter indicate the type of error.

e void DLConnectConfirm() - Used by the data-link module to indicate to the
T55X layer that AX.25 is now connected.

e void DLDisconnectConfirm() - Used to indicate to the T55X layer that AX.25
is now disconnected after a DLDisconnectRequest.

e char void DLDisconnectIndication() - Used to handle a disconnection that
was not initiated by the T55X layer - e.g. if the peer disconnected or the connection
was lost.

e char void DLConnectIndication() - This function is invoked if the peer re-
quests an connection.

14.6.2 Data Structures

Several data structures are used in the data-link state machine. Most of them are simple
definitions used to make the program more simple to read.

December 20, 2001 101

CHAPTER 14. AX.25

Error codes

DL_ERROR_A - A frame has been received with F bit set to 1, but no frame has
been sent with P bit set to 1.

DL_ERROR_C - An unexpected UA-frame has been received.

DL_ERROR_D - An UA-frame has been received without F=1 when a SABM or
DISC frame was sent with the P bit set to 1.

DL_ERROR_E - Unexpected DM-frame received.
DL_ERROR_F - Indicates that data-link was reset
DL_ERROR_G - RC to big in awaiting connection state
DL_ERROR_H - RC to big in awaiting release state
DL_ERROR_I - N2 timed out - unacknowledged data
DL_ERROR_J - NR sequence error

DL_ERROR_K - Invalid frame received

DL_ERROR_O - I-frame exceeded maximum allowed length
DL_ERROR_Q - Ul-response received, or Ul-frame received with P bit set to 1
DL_ERROR_S - I-response received

DL_ERROR_T - N2 timed out - no response to enquiry

DL_ERROR_U - N2 timed out - extended peer busy condition

Internal Variables

The data-link state machine consists of several internal variables that describes the
current state of the state machine. The most important of them are mentioned below:

102

SRT - Smoothed round trip time value

layer3Initiated - Has layer 3 tried to initiate communication? Important when
receiving confirmation from the peer, of an establishment of the data-link.

dlState - The current state of the data-link state machine (e.g. disconnected,
awaiting connecting, awaiting release, connected or timer recovery).

rejectException - Has a reject exception been raised?

SREJEnabled - Is selective reject enabled?

Group 555 14.6. DATA-LINK

e SRejectException - Has a selective reject been raised?
e peerRecieverBusy - Is the peer receiver busy?

e ownRecieverBusy - Is this terminals receiver busy?

e acknowledgePending - Are any acknowledges pending?

e VS - Contains the next sequential number to be assigned to the next transmitted
I frame.

e NS - Contains the sequence number of the I frame being sent.
e VR - Contains the sequence number of the next expected received I frame.
e NR - Contains the sequence number of the most recently received I or S frame.

e VA - Contains the sequence number of the last frame acknowledged by the peer.

I-Frame Queue

The data-link state machine uses an internal queue in order to be able to handle more
than one I-frame at the time. The queue is a dynamic FIFO queue implemented as a
doubly linked list. The queue has two functions:

e void insert(listItem* *head, iFrame frame) - Inserts a new iFrame in the
list. The head parameter is a pointer to the first listitem in the linked list.

e iFramex pop(listItem* *head) - Returns and removes the oldest iFrame in the
list.

14.6.3 Functions

This section will describe the functions in the module.

DLDataRequest

This function receives I-frames from the segmenter and if possible transmit these frames
using the link multiplexer. The function returns no value, so the sender has no in-
surance that the data will reach its goal. Confirmation of data being send should be
implemented in upper layers. If the frame is lost during transmission, it will if possible
be retransmitted. If an error-indication is received by the T55X layer (e.g. DL_ERROR_I)
this can implicitly be considered as a failure of sending the data. However silence (no
error indications) can not be considered as a confirmation that the data was send.

December 20, 2001 103

CHAPTER 14. AX.25

DLUnitDataRequest

This function sends data connection-less, meaning it just transmits the frame, and
afterwards forget about it. It expects that the input data is already segmented into the
uFrame format. If the data doesn’t reach the peer, a retransmission is not invoked.

DLConnectRequest

This function attempts to establish a data link. It does not return any values, but if
the attempt is successful the function DLConnectConfirm() will be invoked. If a data-
link can not be established within a certain amount of time, a re-request will occur.
After N2 re-requests an DL_ERROR_INDICATION(G) will be received, and the function

DLDisconnectIndication() will be invoked. If the request is successful the peer will
receive a DLConnectIndication().

DLDisconnectRequest
Requests a disconnection of the data link. This will delete any data that is not transmit-

ted yet. No value will be returned by the function, but the function DLDisconnectConfirm()
is invoked when the data-link has been destroyed.

The peer will receive a DLDisconnectIndication().

14.6.4 Internal Functions

This section describe the internal functions of the module.

void startTi1

Used to start the T1 timer.

void stopTl

Used to stop the T1 timer.

void startT3

Used to start the T3 timer.

void stopT3

Used to stop the T3 timer.

104

Group 555 14.6. DATA-LINK

void T1Expiry

This function is invoked by the data-link state machine whenever the T1 timer has
been started and the time interval defines for this timer has passed. Depending on the
current state of the data-link state machine different actions will be taken according to
the AX.25 specifications.

void T3Expiry

This function is similar to void T1Expiry. The only difference is that it is linked to
the timer T3.

void UICheck

This function is invoked when Ul-frames are received. The function does not return any
values, but if there are any errors in the Ul-frame it invokes DLErrorIndication(). If
the Ul-frame is correct DLUnitDataIndication is invoked.

void checkNeedForResponse

This function is used to determine if a response is needed whenever a frame is received.
If the incoming frame is a frame with the p bit set to 1 a response is needed. If this
is the case enquiryResponse is invoked. If a response frame with the p bit set to 1 is
received DLErrorIndication is invoked.

void clearExceptionConditions

Resets the following variables - peerRecieverBusy, ownRecieverBusy, rejectException
and acknowledgePending.

void establishDataLink

Used to establish a data-link. It creates a SABM-frame and sends it to the link-
multiplexer. Also is stops T3, and starts T1 in order to be able to retry to establish the
data-link if too much time passes.

void selectTl

This function is used to determine the next value of the timer T'1. The value is deter-
mined from the value of RC.

December 20, 2001 105

CHAPTER 14. AX.25

checkIFrameAcked

Used by the data-link state machine to determine which actions should be taken upon
reception of I frames. It determines which timers should be restarted and if new values
should be selected. Also it updates the value of VA.

void NRErrorRecovery
When an acknowledgment error that can not be recovered occurs AX.25 solves this by
resetting the data-link and reconnects. This function is responsible for indicating to

upper layers through DLErrorIndication that a NR error has occurred. Afterwards the
function invokes establishDataLink.

void invokeRetransmission

Invoked whenever retransmission of frames is necessary.

void 1mIFrameDatalIndicate

This function is always invoked by the link multiplexer. It is used by the data-link state
machine to handle incoming I-frames. The function acts differently depending on the
current state of the data-link, according to the specifications in the AX.25 protocol.

void 1lmSFrameDatalIndicate

Similar to void 1lmIFrameDataIndicate - the only difference is that it handles S-frames
instead of I-frames.

void 1lmUFrameDatalIndicate

Similar to void 1lmIFrameDataIndicate - the only difference is that it handles U-frames
instead of I-frames.

void LMSeizeConfirm

Invoked by the link multiplexer whenever the data-link state machine is allowed to seize
control of the radio.

iFrame createIFrame

The function is used to allocate memory for a new I-frame and fill out the following
fields: Source, destination, NS, NR, pbit, data, dataLength and the type of command.

106

Group 555 14.6. DATA-LINK

uFrame createUFrame

This function is used to allocate memory for a new U-frame and fill out the following
fields: Source, destination, frame-type, command-type, data and data-length. All the
available frame types are described later in this chapter. The command-type indicates
whether it is a command or response frame.

sFrame createSFrame

This function is used to allocate memory for a new S-frame and fill out the following
fields: Source, destination, NR, frame-type, pbit and commandtype.

void enquiryResponse

This function is used whenever a command frame is received with the pbit set to 1.
This means that the terminal have to response to the peer. The function sends back a
RR-frame or RNR-frame to the peer - depending on the terminals own reciever is busy
or not.

char pBit

The function returns the value of the p/f bit in the control field of a frame.

char frameType

The function returns whether the frame is a command/response frame. If the frame is
not any of these, it returns an error.

14.6.5 Test Specification

The data-link module will be tested using the white-box-technique. It should be noted
that testing the module by only trying all the inputs to the c-functions is not enough
since most of the functions depends on external factors - such as the state of the data-
link machine, NR etc. In the test specification these external factors will be considered
as input to the function.

Since the c-functions rarely have any output but rather invoke other functions and/or
change the state of the data-link, the output in the specification is the expected function
calls and the state of the data-link right after the function has been called.

Since the amount of inputs to the functions are relative limited, the black-box test tries
to cover all possible inputs.

December 20, 2001 107

CHAPTER 14. AX.25

Because of the extend of this test, the specification is available on the project CD-ROM
in the two files testspec.ps and testspec.pdf in the /test/datalink/ library.

108

Chapter 15

TH5X

The T55X layer has not been implemented due to lack of time, but the initial steps in
the implementation process are covered in this chapter.

15.1 Overview

This section will provide an overview of the implementation of the T55X. Because of
the limited resources on the satellite the software has has to be minimized. One thread
should be capable of controlling the T55X layer. The SDL state machine TTC has been
chosen to be the thread while the other two state machines are function libraries. The
interfaces to other layers are shown in Figure 15.1.

15.2 Modifications

This section discusses the modifications that are necessary to implement the system.
The system should follow the SDL model as close as possible, meaning that the func-
tionality of the state machines must be kept intact. In fact some functionalities that
were left out from the model verification is once again included.

The design of the structure of the signals in the SDL model, has been created using
ObjectGEODE’s capability to manage data types. An example is that there never had
to be used pointers to describe data and buffers. The frame structure for signals has
to be changed so that it always informs where the data is resident in memory, with a
pointer and length instead of the Object GEODE data field.

109

CHAPTER 15. T55X

Application
A
T55X
Thread Function libraries
A 4
Y
e Channel
™
De- multiplexer
A\
AX.25

Figure 15.1: An overview of the interfaces and the task of the T55X layer

15.2.1 Channel

Functions which were left out of the design, but will be reintroduced in the implemen-
tation for the channel are:

o Left To Transmit

Elements in Transmit Buffer

Flush Entire Transmit Buffer

Flush the First Element in Transmit Buffer

Data in Receive Buffer

15.2.2 TTC

A single function which was left out of the design of the TTC will be reintroduced in
the implementation of the TTC. This function is:

o Resume connection

110

Group 555 15.3. TEST SPECIFICATIONS

15.3 Test Specifications

The test specification could be ported and reused from the design test specification.
The main difference is that functions are used instead of signals. The reason that it is
possible to reuse the test specification is that nothing should have been changed during
the implementation.

December 20, 2001 111

Chapter 16

Test

This chapter documents the tests conducted on the implemented system accroding to
the test specifications.

16.1 Segmenter

This section describes the tests performed on the segmenter module according to the
test specifications stated in section 14.4.1. The source code used and the test results
can be found on the project CD-ROM in folder “test/segmenter/”.

Both functions are tested with a test program (represents T55X module) and a test
data-link module.

16.1.1 Test Program

The pseudo code for the test program is:

main(){
Arraytype data
data.length = 32768
data = [0,1,2,3....254,255,0,1,2,3..... 253,254,255]
print "kkkxkxkkk Test case 1 kxkxkkkkx!
print "Length"+test case 1 length
i = DataRequest(data, test case 1 length)
print "Return value: "+i

print "xxxkkkkkk Test case n kkkkkkokkk!
print "Length'+test case n length

112

Group 555 16.1. SEGMENTER

i = DataRequest(data, test case n length)
print "Return value: "+i

}

The DataRequest call can also be a UnitDataRequest call.

16.1.2 Test Data-Link Module

The DLDataRequest function called from the segmenter in the data-link module has the
following pseudo code:

Mokkkkkkkk Frame number skkskskskokkk!
"PID: "+frame.pid

"Length: "+frame.datalLength

"First byte: "frame.datal[0]

the info field

print
print
print
print
print

The DLUnitDataRequest function has the same pseudo code, except it will not write
out PID and first byte information.

16.1.3 Result

All tests were conducted and they all had the expected result, which ensures that all
paths through the functions works according to the specification.

An example of the test output for test case 2 looks like this:

rokkkokkkokkkkk Test Case 2 kkkkkokkokkkok
Length=256

wookokkkokokkokk Frame 1 skoksokoksokkkskokskok
PID: 240

Length: 256

First byte: 0

123456
24 25 26 27
44 45 46 47
64 65 66 67
84 85 86 87
103 104 105
118 119 120
133 134 135
148 149 150
163 164 165

789 10 11
28 29 30 31
48 49 50 51
68 69 70 71
88 89 90 91
106 107 108
121 122 123
136 137 138
151 152 153
166 167 168

December 20, 2001

12 13 14 15
32 33 34 35
52 53 54 55
72 73 74 75
92 93 94 95
109 110 111
124 125 126
139 140 141
154 155 156
169 170 171

16 17 18 19
36 37 38 39
56 57 58 59
76 77 78 79
96 97 98 99
112 113 114
127 128 129
142 143 144
1567 158 159
172 173 174

20 21 22 23
40 41 42 43
60 61 62 63
80 81 82 83
100 101 102
115 116 117
130 131 132
145 146 147
160 161 162
175 176 177

CHAPTER 16. TEST

178
193
208
223
238
253

179
194
209
224
239
254

180 181 182 183 184 185 186 187 188 189 190 191 192
195 196 197 198 199 200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217 218 219 220 221 222
225 226 227 228 229 230 231 232 233 234 235 236 237
240 241 242 243 244 245 246 247 248 249 250 251 252
255

Return value: 1

All the results can be found in the testfile file in directory: /test/segmenter/ on the

project CD-ROM.

16.2 Reassembler

This section describes the tests performed on the reassembler module according to the
test specifications stated in section 14.5.4. The source code used and the test results

can be found on the project CD-ROM in folder “test/reassembler/”.

Both functions are tested with a test program (represents data-link module) and a test

T55X module.

16.2.1 Test Program

The pseudo code for the test program is:

main(){
print "*xkkkkkkk Test case 1 kkkkkkokkk!

print Test case 1 purpose

print "Frame number 1"

print "Length= "+Test case 1, Frame number 1 length

print "PID= "+Test case 1, Frame number 1 PID

114

print "First byte in info= "+Test case 1, Frame number 1 info[0]

frame=new frame

put

values in frame

returnvalue=DataIndication(frame)
print "Return value= "+returnvalue

print "Frame number n"
print "Length= "+Test case 1, Frame number n length
print "PID= "+Test case 1, Frame number n PID

print "First byte in info= "+Test case 1, Frame number n info[0]

Group 555 16.2. REASSEMBLER

frame=new frame

put values in frame
returnvalue=Datalndication(frame)
print "Return value= "+returnvalue

print '"sxxxkkkkk Test case n kkkkkkkkx!!
print Test case n purpose
print "Frame number 1"
print "Length= "+Test case n, Frame number 1 length
print "PID= "+Test case n, Frame number 1 PID
print "First byte in info= "+Test case n, Frame number 1 info[0]
frame=new frame
put values in frame
returnvalue=DataIndication(frame)
print "Return value= "+returnvalue

print "Frame number n"

print "Length= "+Test case n, Frame number n length

print "PID= "+Test case n, Frame number n PID

print "First byte in info= "+Test case n, Frame number n info[0]
frame=new frame

put values in frame

returnvalue=DataIndication(frame)

print "Return value= "+returnvalue

16.2.2 Test T55X Module

The receiveDataFromAX function called from the reassembler in the T55X module has
the following pseudo code:

print '"k*kkkkkxx Receiving connection oriented data xkkdokkkxk!
print "Length: "+length
print "Data: "+print out the data

The receiveConLessDataFromAX function has the same pseudo code, except from the
first line:

print "k¥kkkkkxx Receiving connection less data skxkkdokokk!

December 20, 2001 115

CHAPTER 16. TEST

16.2.3 Results

The test program was executed and all tests had the expected output according to the
test specification. It implies that all paths through the functions works according to the
specification.

An example of the test output for test case 1 looks like this:

*okokokokkokokkokkkokokkokkkokkkkk Test Case 1 skkskokksokkokskokskoskkokokkskokokkokkk
Single Segment

Frame number 1:

Length=256

PID=0xFO0

First byte in info is data

*kkkkkkk*x*x Receiving connection oriented data ¥¥kkkkkkkxk

Length: 256

Data:

0123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
246 247 248 249 250 251 252 253 254 255

Return Value=1

The output from the entire test is found in the testfile file in the /test/reassembler/
directory on the project CD-ROM.

16.3 Segmenter and Reassembler

This section documents the test conducted on the segmenter and reassembler working
together as specified in section 14.5.4.

The modules are tested using a test data-link module and a test T55X module.

116

Group 555 16.3. SEGMENTER AND REASSEMBLER

16.3.1 Test Data-link

The DLDataRequest function in this module calls the DataInidication function in the
reassembler module with the same parameter as it received itself. The code is:

char DLDataRequest (iFrame* frame) {
DataIndication(frame) ;

}

16.3.2 Test T55X

This module is responsible for sending, receiving and comparing data. The main function
in the module has the following pseudo code:

Arraytype data;
data.length = 32768;
data = [0,1,2,3....254,255,0,1,2,3..... 253,254,255] ;
loop 20000{
len=random number between 0 - 32768;
i=DataRequest(data,len);
if (i==DATA_TOO_LARGE)print("Length: "+len+" Data was too large");
if (i==DATA_ERROR)print("Length: "+len+" Data<i");
b

The loop is limited to 20000 iterations to limit the size of the testfile.

The pseude code for the receiveDataFromAX function, that receives data from the
reassembler, is:

void receiveDataFromAX(char* start,int length){

if (len==length){

correct=2;

loop length times

if (tgs[j]!=start[j])correct=1;

}
else

correct=0;
printf("Length: "+len+" Correct: "+ correct);

}
With the given pseudo code the value of correct means:

e correct=0 - The length of the data was not correct.
e correct=1 - The data was not correct.

e correct=2 - The length and the content of the data was correct.

December 20, 2001 117

CHAPTER 16. TEST

16.3.3 Results

The test was conducted and all 20000 test cases had the expected result, which raises the
probaility that the implementated modules are correct according to their specification.

And example of 10 test outputs looks like this:

Length: 22529 Correct: 2

Length: 7704 Correct: 2

Length: 829 Correct: 2

Length: 27735 Correct: 2

Length: 14860 Correct: 2

Length: 31311 Correct: 2

Length: 32719 Data was too large
Length: 29186 Correct: 2

Length: 12811 Correct: 2

Length: 17962 Correct: 2

The test was also conducted where the loop was not limited to 20000 but iterated
infinitely. And the test program was set to halt if correct was different from 2.

16.4 Data-link

This section will describe the test performed on the data-link module according to the
test specifications in section 14.6.5. The source code for the test-program can be found
on the project CD-ROM in folder “test/datalink”.

16.4.1 Test Functions

To carry out the blackbox test, some extra functions are neccesary. Also some macros
are defined in order to print out test results. These are described below:

Macros

STOP _T1 - Prints that timer 1 has beens stopped.

START T1 - Prints that timer 1 has beens started.

STOP T3 - Prints that timer 3 has beens stopped.

START T3 - Prints that timer 3 has beens started.

DLSTATE - Prints the currenct value of dlState.

118

Group 555 16.4. DATA-LINK

e [FRAME PUSHED ON_QUEUE - Prints that an I-frame has been pushed onto
the queue.

e DLCONNECT CONFIRM - Prints that DLConnectConfirm() has been invoked.

e DLCONNECT INDICATION - Prints that DLConnectIndication() has been
invoked.

e UNIT DATA INDICATE - Prints that DLUnitDataIndication() has been in-
voked.

e PRINT ERROR - Prints which error that has occoured when DLErrorIndication()
has been called with.

e INVOKE RETRANSMISSION - Prints that invokeRetransmission() has been
invoked.

e DLDISCONNECT INDICATION - Prints that DLDisconnectIndication() has
been invoked.

e DLDISCONNECT _CONFIRM - Prints that DLDisconnectConfirm() has been
invoked.

Functions

e void setAcknowledgePending(char val) - Setsthe value of acknowledgePending.
e void setNR(char val) - Sets the value of NR.

e void setOwnRecieverBusy(char val) - Sets the value of ownRecieverBusy.

e void setPeerRecieverBusy(char val) - Sets the value of peerRecieverBusy.
e void setRC(char val) - Sets the value of acknowledgePending.

e void setVS(char val) - Sets the value of VS.

e void setVA(char val) - Sets the value of VA.

e void setLayer3Initiated(char wval) - Sets the value of layer3initiated.

e void setNS(char val) - Sets the value of NS.

e void setVR(char val) - Sets the value of VR.

e void printDl1State() - Prints the current state of the data-link state machine.

e void setD1State(char state) - Sets the state of the data-link state machine.

December 20, 2001 119

CHAPTER 16. TEST

16.4.2 Test Program

An example of the test program for test case number 18 and 19 can be seen here:

Test code

/* SABM frame test - start */
printf ("*** Test %d ***\n", testNum);
printf("Recieving SABM command frame pf bit = 0 \n
Expected result: UA_FO (Expidited) +
DL_CONNECT_INDICATION + T3 started +
state -> CONNECTED\n\nResult:\n");
setD1State (DISCONNECTED) ;
1mUFrameDataIndicate(createUFrame(source, dest,
SABM_PO, COMMAND_FRAME,
0,N1));
printD1State();
printf("Recieving SABM command frame pf bit = 1 \n
Expected result: UA_F1 (Expidited) +
DL_CONNECT_INDICATION + T3 started +
state -> CONNECTED\n\nResult:\n");
setD1State (DISCONNECTED) ;
1mUFrameDataIndicate(createUFrame(source, dest,
SABM_P1, COMMAND_FRAME,

0,N1));
printDlState();
printf ("**x End Test %d ***\n",testNum);
testNum++;

/* SABM frame test - end */

Output

Below the output from the test code is shown:

xxx Test 5 *xx*

Recieving SABM command frame pf bit = 0

Expected result: UA_FO (Expidited) + DL_CONNECT_INDICATION + T3
started + state

-> CONNECTED

Result:

Uframe (UA_FO) (RESPONSE_FRAME) expidited unit data request
DL-CONNECT-INDICATION

Started T3

120

Group 555 16.4. DATA-LINK

State: CONNECTED

Recieving SABM command frame pf bit =1

Expected result: UA_F1 (Expidited) + DL_CONNECT_INDICATION + T3
started + state

-> CONNECTED

Result:

Uframe (UA_F1) (RESPONSE_FRAME) expidited unit data request
DL-CONNECT-INDICATION

Started T3

State: CONNECTED

**x*x End Test 5 **x*

As it can be seen from these results, the function behaves as expected with the given
input. Since the test is very long please refer to the testfile file on the project CD-
ROM in folder “test/datalink/”.

December 20, 2001 121

Chapter 17

Summary

This chapter describes the status of the implementation of AX.25 and T55X. Which
parts are finished and which parts are missing.

17.1 AX.25

The following modules have been implemented and tested:

e Segmenter
e Reassembler

e Data-link

The only thing missing from these modules are the details about the timers. The
functionality is implemented, but the actually timers are missing.

The following modules have not been implemented:

e Management data-link - The values handled by this state machine are defined as
constants.

e Link multiplexer - Functions has been defined in order to maintain compatibility
with data-link state machine.

e Physical state machine - Not implemented at all due to a decrease in group mem-
bers.

Since all modules have not been implemented a test of the total system has not been
done. Furthermore the implementation has been done on a Solaris-platform. The plat-
form on the CubeSat will have both different operating system and different hardware.
The implemented parts of AX.25 has not been tested on this platform.

The following things would need to be done in order to complete the implementation:

122

Group 555 17.2. TH5X

e Implement management data-link, link multiplexer and physical state-machine.

Implement timers with the facilities provided by the operating system on-board
the satellite.

Port implementation to the on-board computer on CubeSat

Integrate all the modules with each other.

Test the total system.

17.2 T55X

The T55X layer has not been implemented, but the structure of a potential implemen-
tation has been analyzed and described.

December 20, 2001 123

Part V

Conclusion

SIS F— A |}

Aalborg University

This part covers the status of the project - which parts of the communication subsystem
for the CubeSat project are done and which ones are incomplete. This will be useful for
a potential new project group, that would finish the CubeSat communication subsystem.
Finally it will describe the development process in this project.

125

Chapter 18

Project Status

The original purpose of having a complete communication subsystem ready by the end
of this project period has not been reached, but the development is well under way. This
section describes which parts of the original purpose that is fully developed and which
have not been developed yet.

18.1 Completed

This section describes the tasks that have been completed.

Hardware

A supplier of the communication hardware was found (One Stop Satellite Solution -
OSSS). This company is still in the process of developing the hardware, meaning that
the hardware has not been purchased; but specifications for the modem have been
available and analyzed. The analysis of the hardware included a link budget for the link
between the ground station and the satellite.

Requirements and Interfaces
In cooperation with the other CubeSat project groups, a requirement specification for

the communication software has been established. The main focus of this requirement
specification was to establish a well defined interface to the communication subsystem.

AX.25 Protocol

An existing data-link protocol AX.25 was chosen as a basis for the communication
protocol. AX.25 is a protocol widely used by the amateur radio community and several

127

CHAPTER 18. PROJECT STATUS

other CubeSat projects. The protocol provides the necessary functionality needed for
this project, and supports half-duplex communication as needed by the hardware.

The segmenter and reassembler modules in the AX.25 protocol have been implemented
using the C programming language on a Solaris / SPARC platform. The data-link
module has also been implemented on this platform, but the timers in this module
have not been implemented. The functions to invoke when timers expire have been
implemented.

The implemented parts of AX.25 have been tested using white-box and black-box testing
techniques. Test specifications were written and tests were conducted according to them.
All tests had the expected result, hence the implementation is considered as correct
according to the test specifications.

T55X Layer Protocol

Furthermore a combined transport and session layer, named T55X has been specified.
This protocol has been designed and modeled in SDL using the Object GEODE tool.
The purpose of using ObjectGEODE was to verify and validate the protocol.

Simulations has been conducted on the model and all errors detected in these tests have
been corrected. Furthermore a planned verification of the model proved impossible to
conduct as the model was to complex. For the same reason validation was not conducted
either.

The T55X layer has not been implemented, but the structure of a potential implemen-
tation has been analyzed and described.

18.2 Pending Items

This section lists the parts of the project that are incomplete and needs to be done to
have a complete communication system.

Hardware

e Consider other possible solutions than the one from OSSS or go ahead and buy
the hardware from OSSS.

Integrate the hardware with the other subsystems and with the mechanical struc-
ture.

Purchase ground station hardware: Antenna, transceiver, rotor etc.

Test the hardware.

Design and implement a micro controller for the emergency beacon.

128

Group 555 18.2. PENDING ITEMS

To complete these tasks it will of course require that a complete hardware solution is
bought or developed. When the final hardware is ready it would be desirable to have a
person, with experience in integrating and testing this type of hardware, to take over.

The micro controller for the emergency beacon will probably be a PIC similar to one
of those used in the other subsystems, because they have already been tested for space.
While the functionality is rather simple, completing this part should not be very time
consuming.

AX.25 Protocol

Complete implementation of data-link module.

Port the currently implemented parts to the platform on board the satellite.

Implement physical layer including device drivers.

e Combine all modules into a complete protocol.

Test the complete protocol.

Our experience is that the documentation of the AX.25 is not very precise, hence this
task could be very time consuming.

T55X Layer Protocol

e Simplify the model to complete design verification and validation.
e Implement the protocol.

e Test the implementation.

Along with the implementation of the AX.25 these tasks will be where most of the future
work is needed.

Integrating and Testing the Complete System

e Combine AX.25 and T55X.
e Test the complete communication system.

e Integrate the communication protocol with the data handling system.
Our experience is that integrating and testing larger systems can be very complicated
and time consuming. For instance, different interpretation of the interfaces can lead to

a lot of problems.

December 20, 2001 129

Chapter 19

Project Course

This chapter describes the course of the project by looking at the development process,
educational achievments and finally a retrospective view.

19.1 Development Process

When the project started the intention was to have a fully operational communication
subsystem ready by the time this report was due. Since no student groups from the
Department of Communication Technology have been involved in the AAU CubeSat
project, it was decided to purchase the communication hardware from One Stop Satellite
Solution (OSSS). At the time when this report was delivered, OSSS was still working
on the hardware. During the project period much time and effort have been put into
communication with OSSS about the hardware. But since OSSS is still working on the
hardware, full specifications have not been available.

Since a lot of student groups have been working on the AAU CubeSat project, inten-
sive communication between the groups has been necessary. Deciding who should be
responsible for which parts of the satellite, including specific parts of the individual sub-
systems, took quite some time at the beginning of the project. After the responsibilities
were settled, the interfaces to other subsystems had to be agreed upon. With two groups
working on the communication software the work had to be divided. At first the two
groups worked together on everything to ensure a common understanding and general
agreement on what had to be developed. Later in the project the work was divided the
following way:

e 01gr554 - Modeling and verification of the AX.25 protocol. Implementation of
the software on the ground station.

e 01gr555 - Modeling and verification of the T55X layer. Implementation of the
software on the satellite.

130

Group 555 19.2. EDUCATIONAL ACHIEVEMENTS

Along the way a lot of modifications have been made to the original design ideas, mainly
due to feedback from other groups. Thus the design phase has taken considerably longer
time than first expected. Furthermore the actual design was started later than expected,
since much effort was put into discussing the needs, interfaces etc. with other groups.
The first part of the project was furthermore delayed by the fact that the groups involved
in the AAU CubeSat project was not used to this type of project. Most student projects
at AAU do not require cooperation with several other groups, therefore some time was
spent adjusting to this and finding common ground.

The design part of this project only included the T55X layer, since the AX.25 protocol
was predefined. This meant that the implementation of AX.25 could be done in parallel
with the design of T55X. In the end the implementation also suffered from the fact that
a member of the group chose to take leave from his studies.

19.2 Educational Achievements

The bottom line is, the project period has definitely not been as we expected, but it has
never the less been very educational. The main subjects we have obtained knowledge
about are:

e Aerospace engineering.

Wireless communication.

e Communication protocols.

SDL for modeling and validation.

Real life engineering project.

As part of the AAU CubeSat project we attended eight courses in aerospace engineering,
such as: Space environments and orbit, spacecraft engineering, communication system
etc.

Finding possible solutions for the hardware part of the system, necessitated that we
studied the fundamentals in wireless communication, e.g. link budget.

One of the main parts in the project was to analyze, design, model, validate, implement
and test communication protocols. More specifically the AX.25 data-link protocol was
analyzed, implemented and tested. A higher level protocol, called T55X, was analyzed,
designed, modeled and to some extend validated in SDL.

The tool used for SDL modeling and validation was ObjectGEODE. Understanding the
syntax and functionality of this tool has also been one of the main parts in the project.

Being part of a real life engineering project has been a big challenge for us. We only
had experience in working in groups up to seven people working closely together on the
same specific project. The AAU CubeSat project involves about 60 people working on

December 20, 2001 131

CHAPTER 19. PROJECT COURSE

9 different projects. Agreeing on simple things like mission took a whole month, and
more specific items as interfaces was also not an easy task.

19.3 Retrospective View

Looking back at the development process, there are things that should have been done
differently:

e Department of Communication Technology at AAU (KOM) should have been
affiliated to the project.

e Better analysis of the data-link protocols, before deciding on AX.25.
e Validating an old and widely used protocol as AX.25 was a bad choice.

e Better organization in the CubeSat project.

It turned out that buying wireless communication hardware was not an easy task. Buy-
ing the system still requires knowledge about all the parameters for such a system. Our
qualifications on this area were simply not sufficient, hence too much time was spent on
this task. Furthermore the other subsystems had requirements to the communication
subsystem which we had no control over. A solution to these two problems is to have a
group from the KOM department to be responsible for the communication hardware.

The AX.25 data-link protocol was among other things chosen because it seemed well
documented. However it turned out that the documentation was not very precise on
some areas. If the project was to be done again we would consider to design a simpler
data-link protocol.

Since the documentation of the AX.25 includes SDL diagrams it was decided that group
554 should model and validate the protocol in ObjectGEODE. However it turned out
that converting the SDL diagrams in the AX.25 documentation to SDL in Object-
GEODE was almost a project in it self. Retrospectively it was a bad choice because
AX.25 is an old an widely used protocol, hence it should not be necessary to model and
validate it for a development project.

We find the organization in the CubeSat project a bit too unstructured. It was the
intention that the students should feel that they decided everything on their own. This
can of course raise the motivation but at the same time it can be frustrating that
everybody has to agree on everything. A solution to this problem is to take more
decisions from the top when things get out of hand.

132

Part VI

Appendices

SIS F— 5)

Aalborg University

This part contains the appendices which are: Calculations for the link budget, de-
scription of the AX.25 protocol, description of Object GEODE and a description of the
OSI-model

133

Appendix A

Link Budget

A.1 Probability of Error

To calculate the probability of bit error an equation known as Ebno is used. The Ebno
equation is:
Ey/Ny =

EIRP + G/T +196.15 — 20 - log(d/1 km) — 20 - log((f/1 MHz) — 10 - log(B/1 Hz)
(A.1)

EIRP, also known as "Equivalent Isotropically Radiated Power", is the power required
by the transmitter output for a antenna that is omni directional such as the CubeSat
antenna. EIRP is calculated by the following equation:

Where P, is the transmitting power and G; the transmitter gain. The CubeSat antenna is
an isotropical antenna with an estimated —3 dBW gain, and has 2 Watts of transmitting
power, corresponding to a P; value of 3 dBW. This gives us that

EIRP=3dB—3dB=0dB (A.3)

G/T is a measurement of the quality factor performance of the receiver. G/T is known
by this equation:

G/T =G, —10-1log(T/1 K), (A4)

where G, is the gain of the receiving antenna and 7T is the system noise temperature.
The yagi antenna currently used have a gain of 16 dB, but to this we can add another

135

APPENDIX A. LINK BUDGET

3 or 6 dB respectively if we use 2 or 4 yagi antennas in an array. The system noise
temperature is 251 K, giving the following result with a single yagi antenna:

G/T =16 dB — 10 - log(251 K/1 K) dB ~ —8 dB (A.5)

20-log(d/1 km), 20-log(f/1 MHz) and 10-log(B/1 Hz) are values to be subtracted, to
take into account the distance d, the frequency f and the bit rate B, who all decreases
the quality of the link. The bit rate B on the modem supplied to us by OSSS is 9600
bps, the frequency f is 433 MHz and the distance d is calculated using Pythagoras as
shown in Figure A.1.

Figure A.1: Calculation of the maximum distance to the satellite is done using Pythago-
ras. Re is 6378 km and h is 600 km. This gives that d = /(Re+ h)2 + Re? =
V2-Re-h+h?=+/2-6378-600 + 6002 ~ 2830 km

The values are:

20 - log(433 MHz/1 MHz) = 52.7 dB

10 - log(9600 Hz/1 Hz) = 39.8 dB

20 - 10g(2830 km/1 km) = 69.0 dB

These values are all to be subtracted from the other values and we can calculate the
Ey/Ny equation:

Ey/Ny=0dB — 8 dB+196.15 dB — 69.0 dB — 52.7 dB — 39.8 dB ~ 26.7 dB (A.6)

136

Group 555 A.1. PROBABILITY OF ERROR

If setting up two or four antennas in an array we can add 3 or 6 dB, giving 29.7 dB and
32.7 dB respectively, but since the E,/N, equation already gives a relatively high value
this should not be necessary. A E,/N, value of approximately 13 dB gives a probability
of bit error around 10713. If it was possible to adjust the bit rate and transmitting
power on the cubesat, we could use the link budget to adjust these to our liking and still
have a E,/N, value below 10 dB, which gives a probability of bit error below the 10~°
that Flemming Hansen has recommended. As this is not possible, the only use of the
Ey/Ny equation is to ensure that we are below the recommended probability of error.

December 20, 2001 137

Appendix B

AX.25

B.1 Introduction

This section will describe the AX.25 version 2.2 protocol. The protocol was developed
in order to fulfill the amateur radio community’s need for a protocol that would reliably
accept and deliver data over a variety of communication links between two signaling
terminals.

e The protocol works both in connection-oriented and connection-less environments.
e It supports both half- and full duplex operation.
e It permits the establishment of more than one link layer connection per device.

e It permits self-connection - meaning a device can establish a link to itself using its
own address for both the source and destination frame.

e It supports flow control - meaning it is able to detect if the receiving end has a
buffer overflow.

e It supports retransmission of corrupt frames.
e It supports n-8 bit data length per frame (default is 256-8 bit).

e It supports unlimited data sizes from upper layers, since it is responsible for seg-
mentation itself.

B.1.1 AX.25 Model

The AX.25 protocol implements the first two layers of the OSI model - the physical layer
and the data link layer. This layer can be divided into several distinct functionalities as
shown in Figure B.1. The figure indicates a Data Link Service Access Point (DLSAP)
at the upper boundary of Layer 2. This DLSAP is the point at which the data link layer

138

Group 555 B.1. INTRODUCTION

provides services to the above layer. Several different data links can exist (in B.1 two
data links are illustrated), each data link have their own DLSAP.

Several data link layer entities exist - these are the Link Multiplexer, Data Link, Man-
agement Data Link, Segmenter and Physical. Entities in the same layer, but in different
systems that must exchange information to achieve a common objective, are called “peer
entities”. Entities in adjacent layers interact through their common boundary.

A model of the AX.25 protocol is shown in Figure B.1. As shown it is possible to
create more than one DLSAP, e.g. different applications using different DLSAP’s. The
different blocks in the model communicate both horizontally and vertically.

DLSAP DLSAP

0S| -Layer v A A v A

Data Segmenter Management I Segmenter Management
L(g)k Data Link Data Link I Data Link Data Link
Link Multiplexer
Physical Physical
(1) Silicon/Radio
Figure B.1: AX.25 model
Segmenter

The Segmenter entity accepts input from the above through the DLSAP. If the unit of
data to be sent exceeds the limits of a AX.25 frame, the segementer breaks the data unit

into smaller segments for transmission. Incoming segments are reassembled for delivery
to the higher layer through the DLSAP.

Data Link

The Data Link entity is the core of the AX.25 protocol. It provides all functionality
necessary to establish and release connections between stations and to exchange infor-
mation.

Management Data Link

The Management Data Link entity provides all logic necessary to negotiate operating
parameters between two stations - e.g. timer settings, window size, duplex mode etc.

December 20, 2001 139

APPENDIX B. AX.25

These parameters are set during a negotiation phase, which can occur at any time.

Link Multiplexer

The Link Multiplexer allows one or more data links to share a single physical (radio)
channel. The Link Multiplexer gives each data link an opportunity to use the channel,
according to the algorithm embedded within the link multiplexer.

Physical

The Physical entity manipulates the radio transmitter and receiver. Because different
types of radio channel operations are used, the Physical entity exists in different forms.
Each form hides the individual characteristics of each radio channel from the higher
layer.

B.1.2 Service Primitives

Layer 3 requests services from the data link layer via command/response interactions
known as service “primitives”. Similarly, the interactions between the data link layer
and the physical layer occurs via these primitives. The primitives exchanged between
two layers are of the following four types:

¢ REQUEST: Used by a higher layer to request a service from the next lower layer.

e INDICATION: Used by a layer to provide a service to notify the next higher
layer of any specific activity that is service related. The INDICATION primitive

may be the result of an activity of the lower layer related to the primitive type
REQUEST at the peer entity.

¢ RESPONSE: Used by a layer to acknowledge receipt from a lower layer of the
primitive type INDICATION. The AX.25 protocol does not use the RESPONSE
primitive.

e CONFIRM: Used by a layer to provide the requested service to confirm that the
activity has been completed.

The service primitives used to communicate between the different entities in AX.25 are
shown in Figure B.2.

Example of the usage of these service primitives to achieve some higher functions can
be seen in Figure B.3 and Figure B.4.

140

B.1. INTRODUCTION

(v1v@)1s3nd3d v1va_Hd
(V1va)1S3nO3y V.Lvad d3Lidlidx3_Hd
‘153n03Y 3SY313Y_Hd

‘1S3N0O3Y 37I13S_Hd
(VLYQNOILYOIANIY.LYQ Hd
‘NOILVOIAN]_ASNg Hd
‘NOILYOIQNI_LINO_Hd

‘NHIANOD 3ZI13S Hd

‘(VLVQ)NOILVYOIONI VLva_ N1
2?96%05 3SYITIY_N1
‘WHIANOD 3ZI3S_IN1
(V1v@)1S3nd3y viva N1
(VLv@)1S3INO3Y V1iva a3LdidXx3a
‘153N03Y 3Z13S W1

‘1S3n03Y NO_MO14_1d
‘1S3n03Y 440 MOT14_1d
(v1va)1S3nd3y vilva LINN_1d
(v1va)1sand3ay viva 1a
‘1S3n03Y LOANNODIA_1d

_ ‘153N03Y LDANNOD_1d
(3000 HOHYI)INOILYDIANI HoHH3 1
‘(VLYQ)NOILYDIGNI VL1vd 1INN_1d
(VLYQ)NOLLYOIONI V1va 1a
‘WHIANOD_LO3INNODSIA_1d
‘NOILYOIGNI" LO3NNOOSId_1d
‘WHIANOD_LO3INNOD_1d
‘NOILVDIANI LOINNOD 1d

‘(INVYS ANY)LSINOIY v1iva A1
‘(FNVH4 ANYINOILYOIANI V1va W1

(3003 "OdYI)ALYIIANI HOHHY3_1aN
(INvH4_aIX)WHIANOD_TILVILODAN_TAN

‘(@NvY4-aIx)LS3INd3IY 3LYILODAN Jm_z
feubis

NOILYDIANI V1va W1
meao#_ EVERERNLN
‘WHIANOD 3ZI13S 1

'1S3N03Y 440 MO14_1d
‘1S3n03Y v1vd LINN_1d
‘1S3n03Y v.Lva_1d
‘153n03Y LOINNODSIA_1d
‘153NO3Y 103ANNOD 1d

NOILYDIONI HOoYYT 1 _
'NOILYDIANI_VY.1vYa_LINN 1
INOLLYOIQNI ¥1vd 10
[WHIANOD LOANNODSIA 1d
'NOILYOIONI LO3NNODSIA 1d
'WHIANOD LOANNOD 1d
'NOILYOIONI LOANNOD 1d

S3N03Y viva Wi

1S3N03Y_V1vad a3liaidx3 i1

[1S3N03Y 3213S W1

153n03y VIva Hd
‘1S3NO3Y VLvA d3Liaidx3_Hd
‘153N03Y 3ISVYI1FY_Hd
‘1S3NO3Y 3Z7I13S Hd

NOILVOIAN|_V.1vd_Hd
‘NOILVYOIAN] ASNg_Hd
ZO_._.<O_QZ_ _13INO_Hd

‘WHIINOD 3ZI3S Hd

Hmwm30mm|ﬁ<o|_>:]

Jaxa|dinin U

yuI7 ereq

153nd3Y NO_MOT4_1d

[NoILvoIaNTYLva W)

U ereq uawabeuep

[LS3NdO3Y 3LYILODIN1aN]

H1VOIANI | HOdY3 1AW
dIINOD ILVILODAN AW

quiT ereq %20|9

Group 555

141

AX.25 SDL model

Figure B.2

December 20, 2001

APPENDIX B. AX.25

Higher Link
Layer Segmenter Data-Link Multiplexer
DL-DATA request |
]
(T55 data) DL-DATA request >
]
DL-DATA request | (Frame1)
(Frame 2) ~| LM-DATA request >
(Frame 2)

Figure B.3: Example of service primitives involved when sending data.

Higher Link
Layer Segmenter Data-Link Multiplexer

DL-CONNECT reguest

.
>

LM-DATA request ~
)

4
[~

LM-DATA indication

<

S
DL-CONNECT confirm

Figure B.4: Example of service primitives involved when creating a connection.

142

Group 555 B.2. FRAME STRUCTURE

B.2 Frame Structure

Data link transmissions are sent in small blocks of data, called frames. In the AX.25
protocol there are three general types of frames:

e Information frame (I frame)
e Supervisory frame (S frame)

e Unnumbered frame (U frame)

A frame consists of several smaller groups, called fields. Figures B.5 and B.6 shows the
construction of the three basic frame types.

Flag Address Control Info FCS Flag
01111110 112/224 Bits 8/16 Bits n*8 Bits 16 Bits 01111110
Figure B.5: U and S frame construction
Flag Address Control PID Info FCS Flag
01111110 112/224 Bits 8/16 Bits 8 Bits n*8 Bits 16 Bits 01111110

Figure B.6: I frame construction

B.2.1 Flag Field

This field is one byte long, and indicates the beginning and the end of each frame. It
consists of a zero trailed by six ones and a zero, ex. 01111110 or in hex numbers (7E).
To avoid a flag sequence anywhere else in a complete frame, bit stuffing is used. When
broadcasting a sequence of frames, two frames can share the same flag field making a
flag indicating the end of one frame and the beginning of another.

B.2.2 Address Field

The address field is 14 or 28 bytes long. It identifies both the source and destination of
each frame. It also contains the command/response information and facilities for data
link repeater operation.

B.2.3 Control Field

This field is one or two bytes long and is used for identifying the type of frame being
sent. Apart from that it contains several control attributes of the data link connection.

December 20, 2001 143

APPENDIX B. AX.25

B.2.4 PID Field

This field is one byte long. The protocol identifier field identifies which kind of protocol
is being used in the third layer, if any. The PID field occurs only in information frames
(I and UI).

B.2.5 Information Field

This field contains the actual user data. The default length is 256 bytes and contains
an integral number of bytes. These conditions apply prior to bit stuffing.

I fields are allowed in the following types of frames: I, UI, XID, TEST and FRMR.

B.2.6 Bit Stuffing

To ensure that a flag field does not accidentally occur anywhere else in a frame, bit
stuffing is used. Every time there is a row of five ones, a zero is added at the end of the
row. The zero is then discharged by the receiver.

B.2.7 Frame-Check Sequence

The frame-check sequence (FCS) field is a two byte number used to ensure that the
frame was not corrupted during transmission. This number is calculated in accordance
with recommendation to the ISO 3309. This field, in opposition to all other fields, is
sent with the most significant bit first.

B.2.8 Invalid Frames

A frame is considered invalid if:

1. It consists of less than 17 bytes (Including flags).
2. Tt is not bounded by flags.
3. It is not byte aligned (an integral number of bytes).

4. Tt contains at least fifteen trailing ones without bit stuffing zeros (the frame is
aborted).

B.2.9 Inter-frame Time Fill

When a TNC needs to keep its transmitter on while not actually sending frames, it
should continuously send flags.

144

Group 555 B.2. FRAME STRUCTURE

B.2.10 Address Field Encoding

As explained above the address field of every frame contain a destination, source and
possibly two data link repeater subfields. Both subfields contains a call sign and a
secondary station identifier (SSID). The call sign is made up of uppercase alpha and
numeric ASCII characters. The SSID is a half byte integer uniquely identifying multiple
stations using the same call sign. The HDLC address field is extended with an extra
bit, extension bit. The call sign is shifted one bit left to make room for this extension.

Non-repeater Address-Field Encoding

When no data link repeaters are used, the address field is encoded as shown in Table
B.1. The address field is separated in two subfields. The destination subfield is seven

Destination Address Subfield Source Address Subfield
Al A2 A3 A4 A5 A6 AT A8 A9 A10 A11 A12 A13 A14

Table B.1: Non-repeater address-field encoding

bytes long, and consists of the call sign and SSID of the designated target. Like the
destination subfield, the source subfield is also seven bytes long, and contains the call
sign and SSID of the originator. This sequence of the address fields allows receivers to
check whether the frame is addressed to them. Both these subfields are encoded in the
same way, except that the source address field has the HDLC extension bit set.

For a more complete description of Address Field encoding see [5].

December 20, 2001 145

Appendix C

Object GEODE

ObjectGEODE is a tool which is used to design and simulate a model described in SDL.
The simulation tool in ObjectGEODE can simulate in either exhaustive mode or non
exhaustive mode.

Non exhaustive mode can be used to test the model with specific traces and random
inputs and acts as preliminary debugging, whereas exhaustive mode can be used to
check every possible trace in the model and will therefore act as final debugging. Before
an exhaustive simulation can be conducted the model should follow these rules:

e A process queue must be restricted from growing towards infinity.

e No variables must have a infinite number of values

If one of these rules are broken the exhaustive search will never finish because new
states will always appear. To fullfill the first rule, filter conditions are used. This
restricts the simulator in ObjectGEODE from taking any transitions which makes a
filter true. Another possibility is to create stop conditions which interrupts a simulation
if true. An example filter is:

filter length (transportsat!ttc_process(1l)!queue) > 2
The ‘filter’ tells the simulator that this is an filter condition. ’length’ get the length

of the transportsat’s ttc_process’ input queue. The '> 2’ is the boolean condition.
Meaning that all transitions adding to the input queue of the ttc process are ignored.

C.1 Startup File

The startup file is used when the simulation facility is initialized. It is possible to state
filters and stop conditions as well as feeds to the system. The startup file can be used
is instead of entering all feeds, filter and stop conditions at each simulation start. The
start up can be seen in (/cd/SDL/transport.startup)

146

Group 555 C.2. STATE GRAPH

C.2 State Graph

When using Object GEODE to simulate it translates the model into state graphs. The
different states are connected with transitions. What characterizes a state is its input
queue and its internal variables. For example in Figure C.1 a process is started and
no transitions taken. This is depth 1 and the breadth is 1. From here there are three
possible transitions each ending in three new states, here the depth is 2 and breadth is
3. When an exhaustive simulation is to be conducted all states has to be visited. A few
different approaches to exploring the state graph is possible.

1 depth
2 depth

3depth
4 depth

Figure C.1: A state graph example.

e Breadth first - The simulator explores all possible transitions in one depth before
continuing to the next depth.

e Depth first - The simulator chooses a transition and continuing from this state
until an edge is reached.

If an exhaustive simulation cannot be completed the result is not very useful because
some parts of the state graph is not explored. For example if the depth first exploration
continues to go deeper into a graph because of an variable that keeps incrementing then
only a small percentage of the state graph might be explored.

C.3 Simulation

The three different types of simulation will be described this beeing simulation, verifi-
cation and validation.

C.3.1 Manual Simulation and Random Simulation
Testing by manual simulating is, as mentioned before, non exhaustive. This means that
the simulation will normally not cover all the different transitions in a model. It can

be used to examine certain scenarios, for example parts of a test specification. Another
use is to let Object GEODE choose which transitions to be taken and generate random

December 20, 2001 147

APPENDIX C. OBJECTGEODE

inputs to the model checking how the model responds. This is very useful for detecting
possible errors since the simulator may take transitions differently than the designer
would. Also this is much faster than manually selecting the transitions.

C.3.2 Verification

Verification is used to detect scenarios which leads to exceptions, deadlocks and loss
of signals. The trace coverage of the model is total meaning that if the verification is
complete it is guaranteed that none of the errors mentioned before will occur.

C.3.3 Validation

Validation is used to check that the model responds to stimuli as stated in the require-
ment specification. When informing Object GEODE two formalisms for expressing the
requirement specification are used:

e Stop conditions - Expresses a condition which halts the system if true.

e MSC - Expresses a part of the model as a signal sequence. MSC can be put
together to form the complete system.

The MSC tree will be described in further detail in the following

C.3.4 MSC Tree

When describing the behavior of a process’ specific interface, MSC’s can be used to
specify a signal flow at a given time. E.g., if connect always causes a sig_receiveEvent
the connect behavior is described, this can be seen in Figure C.2 the connect behavior
is described. If every functionality for a process is described in MSC’s all signals to and
from the process should be found in a MSC. To describe an entire system the MSC’s
has to be interconnected with each other. Object GEODE uses a hierarchially order for
building a system. Figure C.3 shows that first an init behavior is expected and thereafter
the connect behavior. The different types of compositions which connect to MSC are
summarized:

e And - All leafs are visited one at a time.
o Or - One of the leaf are chosen.

e Repeat - Repeat its leafs 0-co times.

148

Group 555 C.3. SIMULATION

Connect
Application
connect
—>
sig_receiveEvent
‘_
|

Figure C.2: MSC for the signal sequence when a connect is received

AND
I_T_I

\ Init \ Connect

Figure C.3: MSC tree showing an AND composition between an init and connect

C.3.5 Validating

When a MSC tree model has been built two options exist for checking this with the SDL
model.

e Verify - All possible traces are examined and if a signal pattern arrives which is
not specified in a MSC it is considered to be an error.

e Search - Only checks whether the MSC tree is a possible behaviors for an interface.
The difference in the MSC tree for the two methods of testing is that for verify a

complete model must be made whereas search is successful when the behavior is found
once. Verify is more reliable since the complete behavior is described.

December 20, 2001 149

Appendix D

OSI Reference Model

The International Standards Organization (ISO) has developed a reference model for
Open Systems Interconnection called the OSI-model. The OSI-model is a well known
model for structuring interconnection of different types of communication system with
the use of layering. The communication among application processes is partitioned into
an ordered set of layers which is illustrated in Figure D.1. For further information about
the OSI-model please refer to [4, page 28].

D.1 The Physical Layer

The physical layer is only concerned with the transmission of raw bits over a communi-
cation channel. Meaning this layer should make sure that when one side sends a bit, this
should be received correctly by the other side. This typically involves specification of
how a bit shall be represented, if signals can be send in both directions simultaneously,
how an initial connection is established, how a connection is stopped etc.

D.2 The Data-link Layer

The data-link layer is concerned with using the facilities of the physical layer and trans-
form these into a line that appears free of transmission errors to the network layer. This
is done by having the sender break the data into data frames (usually from 0-1000 bytes)
and then sequentially transmit these frames. The receiver then sends acknowledgment
frames telling whether the frame was received successfully. Noise can garble the bitsin a
frame, but they normally contain a checksum so detection of garbled frames is possible.
If necessary the data can be retrieved in several ways. One option is to implemented
some form of forward error correction which can reconstruct destroyed data. Another
option is to use the checksum to detect garbled frames, and then retransmit them. An-
other issue the data-link layer needs to deal with is how to keep a fast transmitter from
drowning a slow receiver with data. Some regulation is needed in order to let the trans-

150

Group 555 D.2. THE DATA-LINK LAYER

L Application protocol
Application (ppp ——————————————————————————————— > Application

. Presentation protocol .
Presentation o T > Presentation

. Session protocol .
Session (M R —— > Session

Transport protocol
Transport <Sp ------ profocol > Transport

Communication subnet boundary

Network <(Network - Network }) Network

Data link |- > Datalink - - > Data link - | > Datalink
Physical <[> Physical <> Physical <> Physical
Host A Router Router Host B

Figure D.1: Seven layer OSI reference model

December 20, 2001 151

APPENDIX D. OSI REFERENCE MODEL

mitter know how much buffer space the receiving machine has in the moment. Finally
in broadcast networks there is an extra issue for the data-link layer to deal with: how
to access a shared channel. A sub-layer, the medium access sub-layer, deals with this
problem.

D.3 The Network Layer

The network layer controls how packets are routed from source to destination through
a network. The route a packet follows can be based on static tables, determined at the
start of each conversation or determined on a per packet basis. If too many packets are
sent they can get in each other’s way, forming bottlenecks. Such congestion must also
be handled by the network layer. When a packet is send from one network to another
many problems can arise. The addressing used by the networks may differ, the packet
size may differ and so on. It is up to the network layer to handle all these problems so
different networks can be interconnected.

D.4 The Transport Layer

The basic function of the transport layer is to accept data from the session layer, split it
into smaller units, pass these to network layer and ensure that they arrive correctly at the
other end. This must be done in an efficient way and must isolate the upper layers from
the network. Under normal conditions the transport layer creates a distinct network
connection for each connection required by the session layer. If high data throughput
is required several network connections can be made, dividing the data among them to
improve throughput. On the other hand the transport layer can also multiplex several
transport connections onto one network connections, this is especially useful in creating
and maintaining network connections, which requires many resources. The transport
layer can offer different types of services, the most popular being an error-free point-
to-point channel that delivers data in the order they were sent. Other services can be
offered, for example broadcasting or transport of isolated messages with no guarantee
about the order they arrive in. Since many connections can be made to one host, some
way of telling which connection data belongs to is needed. The transport layer header is
one place this information can be placed. Creating and deleting the network connections
along with flow control is also the responsibility of the transport layer.

D.5 The Session Layer

The session layer allows users on different machines to establish sessions between them.
A session allows ordinary data transport, like the transport layer, but can provide en-
hanced services useful in some applications e.g. logging into a remote timesharing system

152

or file transfer between two machines. Another service in the session layer is synchro-
nization. Consider the problem with a two hour file transfer between two machines with
a mean time of one hour between crashes. After a crash the whole transfer would have
to be repeated. To eliminate this problem the session layer provides the means to insert
checkpoints into the data stream, so only data after the last checkpoint will have to be
retransmitted in the event of a crash.

D.6 The Presentation Layer

Unlike the lower layers, which moves bits reliably from once place to another, the presen-
tation layer is concerned with the syntax and semantics of the data being transmitted.
A typical example of a presentation service is encoding data in a standard way. Differ-
ent computers have different ways of representing e.g. integers, floating- point numbers,
string etc. To make it possible for two machines with different representations to commu-
nicate, the data structures to be exchanged can be defined in a abstract way, along with
a standard encoding to be used for the actual transfer. The presentation layer manages
these abstract data structures and converts them to the appropriate representation.

D.7 The Application Layer

The application layer contains a number of commonly needed protocols. Consider for
example a full screen editor that needs to work over a network with many different
incompatible terminals. One solution to the problem is to define a virtual terminal
that programs are written to deal with. To handle each actual terminal type a piece
of software maps the functions of the virtual terminal onto the real terminal. Another
example is transferring files between systems with incompatible file systems, handling
this problem also belongs to the application layer. Other work for the application layer
can be e.g. e-mail, remote job entry, directory lookup and a variety of other facilities.

153

Bibliography

[1] Group 554. DL55X - The AAU CubeSat Data Link Protocol. AAU, 2001.

[2] Stephen Biering-Sgrensen. Hdndbog i Struktureret Program Udvikling. Ingenigren-
Bgger, first edition, 1988. ISBN: 87-571-1046-8.

[3] Wiley J. Larzon and James R Wertz. Space Mission Analysis and Design. W.J.
Larzon and Microcosm Inc., second edition, 1992. ISBN: 0-7923-1998-2.

[4] Andrew S. Tanenbaum. Computer Networks. Prentice-Hall Inc., third edition, 1996.
ISBN: 0-13-394248-1.

[5] Douglas E. Nielsen William A. Beech and Jack Taylor. AX.25 Link Access Protocol
for Amateur Packet Radio. Tucson Amateur Packet Radio Corporation, 1997.

154

